Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nature ; 622(7981): 156-163, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704728

RESUMO

Medical artificial intelligence (AI) offers great potential for recognizing signs of health conditions in retinal images and expediting the diagnosis of eye diseases and systemic disorders1. However, the development of AI models requires substantial annotation and models are usually task-specific with limited generalizability to different clinical applications2. Here, we present RETFound, a foundation model for retinal images that learns generalizable representations from unlabelled retinal images and provides a basis for label-efficient model adaptation in several applications. Specifically, RETFound is trained on 1.6 million unlabelled retinal images by means of self-supervised learning and then adapted to disease detection tasks with explicit labels. We show that adapted RETFound consistently outperforms several comparison models in the diagnosis and prognosis of sight-threatening eye diseases, as well as incident prediction of complex systemic disorders such as heart failure and myocardial infarction with fewer labelled data. RETFound provides a generalizable solution to improve model performance and alleviate the annotation workload of experts to enable broad clinical AI applications from retinal imaging.


Assuntos
Inteligência Artificial , Oftalmopatias , Retina , Humanos , Oftalmopatias/complicações , Oftalmopatias/diagnóstico por imagem , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/diagnóstico , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico , Retina/diagnóstico por imagem , Aprendizado de Máquina Supervisionado
2.
Exp Eye Res ; 239: 109753, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142764

RESUMO

PURPOSE: The detrimental effects of pathological angiogenesis on the visual function are indisputable. Within a prominent role in chromosome segregation and tumor progression, aurora kinase B (AURKB) assumes a prominent role. However, its role in pathological retinal angiogenesis remains unclear. This study explores this latent mechanism. METHODS: To inhibit AURKB expression, we designed specific small interfering RNAs targeting AURKB and transfected them into vascular endothelial cells. Barasertib was selected as the AURKB inhibitor. The anti-angiogenic effects of both AURKB siRNA and barasertib were assessed in vitro by cell proliferation, transwell migration, and tube formation. To evaluate the angiogentic effects of AURKB in vivo, neonatal mice were exposed to 75% oxygen followed by normoxic repositioning to establish an oxygen-induced retinopathy (OIR) model. Subsequently, phosphate-buffered saline and barasertib were administered into OIR mice via intravitreal injection. The effects of AURKB on cell cycle proteins were determined by western blot analysis. RESULTS: We found that AURKB was overexpressed during pathological angiogenesis. AURKB siRNA and barasertib significantly inhibited endothelial cell proliferation, migration, and tube formation in vitro. Furthermore, AURKB inhibition attenuated retinal angiogenesis in the OIR model. A possible mechanism is the disruption of cell cycle by AURKB inhibition. CONCLUSION: In conclusion, AURKB significantly influenced pathological retinal angiogenesis, thereby presenting a promising therapeutic target in ocular neovascular diseases.


Assuntos
Organofosfatos , Quinazolinas , Doenças Retinianas , Neovascularização Retiniana , Animais , Camundongos , Angiogênese , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/metabolismo , Divisão Celular , Proliferação de Células , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Neovascularização Patológica , Oxigênio , Neovascularização Retiniana/metabolismo , RNA Interferente Pequeno/uso terapêutico
3.
BMC Bioinformatics ; 24(1): 332, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667214

RESUMO

BACKGROUND: To present an approach that autonomously identifies and selects a self-selective optimal target for the purpose of enhancing learning efficiency to segment infected regions of the lung from chest computed tomography images. We designed a semi-supervised dual-branch framework for training, where the training set consisted of limited expert-annotated data and a large amount of coarsely annotated data that was automatically segmented based on Hu values, which were used to train both strong and weak branches. In addition, we employed the Lovasz scoring method to automatically switch the supervision target in the weak branch and select the optimal target as the supervision object for training. This method can use noisy labels for rapid localization during the early stages of training, and gradually use more accurate targets for supervised training as the training progresses. This approach can utilize a large number of samples that do not require manual annotation, and with the iterations of training, the supervised targets containing noise become closer and closer to the fine-annotated data, which significantly improves the accuracy of the final model. RESULTS: The proposed dual-branch deep learning network based on semi-supervision together with cost-effective samples achieved 83.56 ± 12.10 and 82.67 ± 8.04 on our internal and external test benchmarks measured by the mean Dice similarity coefficient (DSC). Through experimental comparison, the DSC value of the proposed algorithm was improved by 13.54% and 2.02% on the internal benchmark and 13.37% and 2.13% on the external benchmark compared with U-Net without extra sample assistance and the mean-teacher frontier algorithm, respectively. CONCLUSION: The cost-effective pseudolabeled samples assisted the training of DL models and achieved much better results compared with traditional DL models with manually labeled samples only. Furthermore, our method also achieved the best performance compared with other up-to-date dual branch structures.


Assuntos
Projetos de Pesquisa , Tomografia Computadorizada por Raios X , Algoritmos , Benchmarking
4.
J Nanobiotechnology ; 20(1): 174, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366885

RESUMO

BACKGROUND: Pathological retinal angiogenesis resulting from a variety of ocular diseases including oxygen induced retinopathy, diabetic retinopathy and ocular vein occlusion, is one of the major reasons for vision loss, yet the therapeutic option is limited. Multiple nanoparticles have been reported to alleviate angiogenic retinopathy. However, the adverse effect cannot be ignored due to the relatively large scale. Graphene quantum dots (GQDs) have shown potential in drug delivery and have been proved biocompatible. In this study, Graphene quantum dots are extensively investigated for their application in angiogenic retinopathy therapy. RESULTS: We showed that GQDs were biocompatible nanomaterials in vitro and in vivo. The nanoparticles have a dose-dependent inhibitory effect on proliferation, migration, tube formation and sprouting of human umbilical vein endothelial cells (HUVECs). Further data show that GQDs could inhibit pathological retinal neovascularization in an oxygen-induced retinopathy (OIR) model. The data of RNA sequencing suggested that periostin is involved in this process. GQDs inhibit the expression of periostin via STAT3, and further regulated cell cycle-related protein levels through ERK pathway. The signaling pathway was conformed in vivo using OIR mouse model. CONCLUSIONS: The present study indicated that GQDs could be a biocompatible anti-angiogenic nanomedicine in the treatment of pathological retinal neovascularization via disrupting periostin/ERK pathway and subsequent cell cycle.


Assuntos
Grafite , Pontos Quânticos , Doenças Retinianas , Animais , Proliferação de Células , Células Cultivadas , Grafite/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Pontos Quânticos/uso terapêutico , Transdução de Sinais
5.
Langmuir ; 37(18): 5457-5463, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33900784

RESUMO

A ZnO/ZnCl2 composite with stable 3D structural morphologies and long lasting superhydrophilicity was synthesized on the top surface of a nano porous anodic alumina (nanoPAA) substrate. The wettability of a nanoPAA-ZnO/ZnCl2 was systematically characterized and the experimental data indicated that the water contact angle (WCA) of 0° could be achieved as well as maintained over 7 days and still remained at 4.36° after 50 days, and its 3D structural morphology had no clearly observable change during this period. The mechanism for the superhydrophilicity of the composites was interpreted in terms of the inherent hydrophilicity of ZnO/ZnCl2 nanofilm, the three-dimensional structures of wrinkled nanoflakes, the nanogaps between neighbor nanoflakes, the difference of structual morphologies (i.e., size, shape, and upright posture of nanoflakes), and the measured True Volume of voids in the nanocomposite. The structural morphologies were mainly determined by the parameters such as the original concentration of precursor ZnCl2 and the pore diameter of nanoPAA substrate. The study proposes a promising superhydrophilic nanomaterial and a cost-effective synthesis method, which will play a practical role in the fields of biomedical molecular sensors and micro/nanofluidic chips.

6.
J Comput Assist Tomogr ; 45(2): 263-268, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33273163

RESUMO

OBJECTIVE: The aim of the study was to assess the peripheral rim instability and the clinical value of discoid meniscus. METHODS: We retrospectively studied 79 magnetic resonance imaging (MRI) examinations of discoid meniscus from May 2017 to September 2019. The patient symptoms and physical findings were documented. The patients underwent "dedicated" 0.25 T supine and weight-bearing MRI examination. Finally, all patients underwent arthroscopy. RESULTS: Sound/clicking during motion (P = 0.009) and limited extension (P = 0.044) of subjective symptoms, clunk during motion (P = 0.035), and flexion contracture (P = 0.012) of physical findings were significant predictors of peripheral rim instability. The comparison of the weight-bearing MRI with the supine position MRI demonstrated that the disformed discoid meniscus was shifted significantly and that no shift was displaced centrally (P = 0.001). A correlation between discoid meniscal displacement and the presence of peripheral rim instability in arthroscopy was noted (P < 0.001) using weight-bearing MRI. CONCLUSIONS: The clinical symptoms of the patients combined with weight-bearing MRI can determine peripheral rim instability optimally.


Assuntos
Instabilidade Articular/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Meniscos Tibiais/diagnóstico por imagem , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Instabilidade Articular/patologia , Instabilidade Articular/fisiopatologia , Masculino , Meniscos Tibiais/patologia , Meniscos Tibiais/fisiopatologia , Estudos Retrospectivos , Suporte de Carga/fisiologia
7.
Sensors (Basel) ; 18(12)2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558201

RESUMO

The present study investigated the synthesis of mesoporous hollow carbon spheres (MHCS) and magnetic mesoporous hollow carbon spheres with core-shell structures (Fe3O4@MHCS). Two acetylcholinesterase sensors (acetylcholinesterase/mesoporous hollow carbon spheres/glassy carbon electrode (AChE/MHCS/GCE) and acetylcholinesterase/core-shell magnetic mesoporous hollow carbon spheres/glassy carbon electrode (AChE/Fe3O4@MHCS/GCE) based on mesoporous carbon materials were prepared. Under the optimum conditions, using Malathion as the model compound, the developed biosensors showed a wide detection range, low detection limit, good reproducibility, and high stability. The AChE/MHCS/GCE electrochemical sensor response exhibited two good linear ranges at the incubation time of 10 min at the Malathion concentration ranges of 0.01 to 100 ppb and 100 to 600 ppb, with a detection limit of 0.0148 ppb (S/N = 3). The AChE/Fe3O4@MHCS/GCE electrochemical sensor that was operated with an incubation time of 12 min at the malathion concentration ranges between 0.01⁻50 ppb and 50⁻600 ppb had a detection limit of 0.0182 ppb (S/N = 3). Moreover, the AChE/MHCS/GCE and AChE/Fe3O4@MHCS/GCE biosensors were effective for the detection of real samples, and were demonstrated to be suitable for the field-testing of organophosphorus pesticide (OP) residues.

8.
Sci Rep ; 14(1): 990, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200026

RESUMO

In patients with kidney disease, the presence of monoclonal gammopathy necessitates the exploration of potential causal relationships. Therefore, in this study, we aimed to address this concern by developing a nomogram model for the early diagnosis of monoclonal gammopathy of renal significance (MGRS). Univariate and multivariate logistic regression analyses were employed to identify risk factors for MGRS. Verification and evaluation of the nomogram model's differentiation, calibration, and clinical value were conducted using the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis. The study encompassed 347 patients who underwent kidney biopsy, among whom 116 patients (33.4%) were diagnosed with MGRS and 231 (66.6%) with monoclonal gammopathy of undetermined significance. Monoclonal Ig-related amyloidosis (n = 86) and membranous nephropathy (n = 86) was the most common renal pathological type in each group. Notably, older age, abnormal serum-free light chain ratio, and the absence of microscopic hematuria were identified as independent prognostic factors for MGRS. The areas under the ROC curves for the training and verification sets were 0.848 and 0.880, respectively. In conclusion, the nomogram model demonstrated high accuracy and clinical applicability for diagnosing MGRS, potentially serving as a valuable tool for noninvasive early MGRS diagnosis.


Assuntos
Amiloidose , Gamopatia Monoclonal de Significância Indeterminada , Lesões Pré-Cancerosas , Humanos , Nomogramas , Rim
9.
Br J Ophthalmol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38834291

RESUMO

Foundation models represent a paradigm shift in artificial intelligence (AI), evolving from narrow models designed for specific tasks to versatile, generalisable models adaptable to a myriad of diverse applications. Ophthalmology as a specialty has the potential to act as an exemplar for other medical specialties, offering a blueprint for integrating foundation models broadly into clinical practice. This review hopes to serve as a roadmap for eyecare professionals seeking to better understand foundation models, while equipping readers with the tools to explore the use of foundation models in their own research and practice. We begin by outlining the key concepts and technological advances which have enabled the development of these models, providing an overview of novel training approaches and modern AI architectures. Next, we summarise existing literature on the topic of foundation models in ophthalmology, encompassing progress in vision foundation models, large language models and large multimodal models. Finally, we outline major challenges relating to privacy, bias and clinical validation, and propose key steps forward to maximise the benefit of this powerful technology.

10.
Sci Total Environ ; 947: 174628, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992371

RESUMO

The Tibetan Plateau, a typical high-altitude area, is less affected by human activities such as industrial development, and the external pollution to water sources is extremely low. Then it is also an important source of water samples for exploring the molecular characteristics of precursors in the dissolved organic matter (DOM) of disinfection byproducts (DBPs) in drinking water. Research data on DBPs in drinking water on the Tibet Plateau remains insufficient, leading to uncertainty about DBP contamination in the area. This study explores the formation potential of 35 typical DBPs, including 6 trihalomethanes (THMs), 9 haloacetic acids (HAAs), 2 halogenated ketones (HKs), 9 nitrosamines (NAs), and 9 aromatic DBPs, during chlorination and chloramination of typical source water samples in the Tibet Plateau of China. Moreover, in order to further investigate the characteristics of the generation of DBPs, the molecular composition of DOM in the collected water samples was characterized by Fourier transform ion cyclotron resonance mass spectrometry. The findings reveal that, for chlorination and chloramination, the average concentration of the five classes of DBPs was ranked as follows (chlorination, chloramination): HAAs (268.1 µg/L, 54.2 µg/L) > THMs (44.0 µg/L, 2.0 µg/L) > HKs (0.7 µg/L, 1.8 µg/L) > NAs (26.5 ng/L, 74.6 ng/L) > Aromatics (20.4 ng/L, 19.5 ng/L). The dominant compounds in THMs, HAAs, and NAs are trichloromethane, dichloroacetic acid, trichloroacetic acid, and nitrosopyrrolidine, respectively. This study highlights a significant positive correlation between DBP generation and UV254, SUV254, and the double bond equivalents of DOM in the source water. It systematically elucidates DOM molecular composition characteristics and DBP formation potential in high-altitude water sources, shedding light on key factors influencing DBP generation at the molecular level in high-altitude areas.

11.
Med Image Anal ; 93: 103098, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320370

RESUMO

Characterising clinically-relevant vascular features, such as vessel density and fractal dimension, can benefit biomarker discovery and disease diagnosis for both ophthalmic and systemic diseases. In this work, we explicitly encode vascular features into an end-to-end loss function for multi-class vessel segmentation, categorising pixels into artery, vein, uncertain pixels, and background. This clinically-relevant feature optimised loss function (CF-Loss) regulates networks to segment accurate multi-class vessel maps that produce precise vascular features. Our experiments first verify that CF-Loss significantly improves both multi-class vessel segmentation and vascular feature estimation, with two standard segmentation networks, on three publicly available datasets. We reveal that pixel-based segmentation performance is not always positively correlated with accuracy of vascular features, thus highlighting the importance of optimising vascular features directly via CF-Loss. Finally, we show that improved vascular features from CF-Loss, as biomarkers, can yield quantitative improvements in the prediction of ischaemic stroke, a real-world clinical downstream task. The code is available at https://github.com/rmaphoh/feature-loss.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Fundo de Olho
12.
Med Image Anal ; 94: 103125, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428272

RESUMO

In this paper, we study pseudo-labelling. Pseudo-labelling employs raw inferences on unlabelled data as pseudo-labels for self-training. We elucidate the empirical successes of pseudo-labelling by establishing a link between this technique and the Expectation Maximisation algorithm. Through this, we realise that the original pseudo-labelling serves as an empirical estimation of its more comprehensive underlying formulation. Following this insight, we present a full generalisation of pseudo-labels under Bayes' theorem, termed Bayesian Pseudo Labels. Subsequently, we introduce a variational approach to generate these Bayesian Pseudo Labels, involving the learning of a threshold to automatically select high-quality pseudo labels. In the remainder of the paper, we showcase the applications of pseudo-labelling and its generalised form, Bayesian Pseudo-Labelling, in the semi-supervised segmentation of medical images. Specifically, we focus on: (1) 3D binary segmentation of lung vessels from CT volumes; (2) 2D multi-class segmentation of brain tumours from MRI volumes; (3) 3D binary segmentation of whole brain tumours from MRI volumes; and (4) 3D binary segmentation of prostate from MRI volumes. We further demonstrate that pseudo-labels can enhance the robustness of the learned representations. The code is released in the following GitHub repository: https://github.com/moucheng2017/EMSSL.


Assuntos
Neoplasias Encefálicas , Motivação , Masculino , Humanos , Teorema de Bayes , Algoritmos , Encéfalo , Processamento de Imagem Assistida por Computador
13.
Ophthalmol Sci ; 4(3): 100441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420613

RESUMO

Purpose: We aim to use fundus fluorescein angiography (FFA) to label the capillaries on color fundus (CF) photographs and train a deep learning model to quantify retinal capillaries noninvasively from CF and apply it to cardiovascular disease (CVD) risk assessment. Design: Cross-sectional and longitudinal study. Participants: A total of 90732 pairs of CF-FFA images from 3893 participants for segmentation model development, and 49229 participants in the UK Biobank for association analysis. Methods: We matched the vessels extracted from FFA and CF, and used vessels from FFA as labels to train a deep learning model (RMHAS-FA) to segment retinal capillaries using CF. We tested the model's accuracy on a manually labeled internal test set (FundusCapi). For external validation, we tested the segmentation model on 7 vessel segmentation datasets, and investigated the clinical value of the segmented vessels in predicting CVD events in the UK Biobank. Main Outcome Measures: Area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity for segmentation. Hazard ratio (HR; 95% confidence interval [CI]) for Cox regression analysis. Results: On the FundusCapi dataset, the segmentation performance was AUC = 0.95, accuracy = 0.94, sensitivity = 0.90, and specificity = 0.93. Smaller vessel skeleton density had a stronger correlation with CVD risk factors and incidence (P < 0.01). Reduced density of small vessel skeletons was strongly associated with an increased risk of CVD incidence and mortality for women (HR [95% CI] = 0.91 [0.84-0.98] and 0.68 [0.54-0.86], respectively). Conclusions: Using paired CF-FFA images, we automated the laborious manual labeling process and enabled noninvasive capillary quantification from CF, supporting its potential as a sensitive screening method for identifying individuals at high risk of future CVD events. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

14.
Materials (Basel) ; 16(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38068168

RESUMO

The aging precipitation behavior of 6061 aluminum alloy that underwent iron casting and water-cooled copper casting and 6061 aluminum with Mn and Zr elements added was studied. Firstly, the hardness curves, tensile properties, and fracture morphology of four aging alloys-6061 (iron mold casting), 6061 (water-cooled copper mold casting), 6061-0.15Mn-0.05Zr (iron mold casting), and 6061-0.15Mn-0.05Zr (water-cooled copper mold casting)-were studied. The results of the aging hardness curve show that the aging precipitated phase of the 6061 alloy cast with a water-cooled copper mold is dispersed. The addition of Mn increases the amount of coarse inclusion α-(AlMnFeSi) in the alloy, resulting in a decrease in the age hardening property. The addition of Zr is related to the nucleation and growth of the G.P. region in the early aging period, mainly changing the formation rate and quantity of the G.P. region, leading to the advancement of peak aging and an increase in hardness. After the G.P. region gradually transforms into the ß phase, the hardness of the alloy increases with the increase in the volume fraction of the ß phase. When the ß″ phase is coarsened to the point where the fault line can be bypassed, the transitional metastable ß' phase begins to precipitate, and the coherent distortion around it weakens, indicating over-aging. Finally, the equilibrium phase Mg2Si is formed. The results of the tensile tests indicate that the tensile strength and yield strength of the 6061-0.15Mn-0.05Zr alloy produced by water-cooled copper casting after aging are 356 Mpa and 230 Mpa, respectively. These values are 80 MPa and 75 MPa higher, respectively, than those of the 6061 aluminum alloy produced via iron casting. However, the elongation is by 5%. The fracture morphology of the tensile sample of the aging alloy shows that dislocation slip in the alloy results in dislocation plugging, stress concentration, and the initiation of crack cleavage on the surface. The fracture of the water-cooled copper mold-casting alloy is a ductile fracture of the microporous aggregation type, and the macroscopic fracture exhibits an obvious "neck shrinkage" phenomenon. The fracture analysis is consistent with the mechanical properties. The DSC curve shows that there is no enrichment process of solute atoms during the heating process, and the aging precipitation process after homogenization is as follows: G.P. zone → ß″ phase → ß' phase. The aging precipitation process of the water-cooled copper casting alloy after homogenization treatment is as follows: ß″ phase → ß' phase (no precipitation in the G.P. zone was observed). The results of the differential scanning calorimetry (DSC) analysis show that the main strengthening phase in the experimental alloy system is the ß″ phase. The activation energies for the ß″ phase precipitation were calculated and found to be 147 KJ/mol, 217 KJ/mol, 185 KJ/mol, and 235 KJ/mol, respectively. Additionally, a kinetic equation for the ß″ phase precipitation during alloy aging was fitted.

15.
Front Physiol ; 14: 1173982, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929213

RESUMO

Aims/Introduction: Diabetic kidney disease (DKD) is defined as diabetes with impaired renal function, elevated urinary albumin excretion, or both. DKD is one of the most common microvascular complications of diabetes and plays an important role in the cause of end-stage renal disease (ESRD). About 5% of people with type 2 diabetes (T2DM) already have kidney damage at the time they are diagnosed, but other triggers of renal insufficiency, such as obesity, hyperlipidemia, glomerular atherosclerosis are often present, making it difficult to define "diabetic kidney disease" or "diabetic nephropathy" precisely in epidemiology or clinical practice. Therefore, the aim of this study is to identify diabetic patients with CKD at an early stage, and evaluate the value of tubular injury markers including α1-microglobulin (α1-MG), ß2-microglobulin (ß2-MG), N-acetyl-beta-D-glucosaminidase (NAG) and Urinary retinol binding protein (URBP) in the development of diabetes to DKD. Materials and methods: We recruited a total of 182 hospitalized patients with T2DM in the First Affiliated Hospital of Zhengzhou University from February 2018 to April 2023. We collected basic clinical characteristics and laboratory biochemical parameters of the patients. Based on their levels of urinary albumin creatinine ratio (UACR) and glomerular filtration rate (GFR), patients were divided into DM group (UACR≤30 mg/g and eGFR≥90 mL/min/1.73 m2, n = 63) and DKD group (UACR>30 mg/g or eGFR<90 mL/min/1.73 m2, n = 119) excluding other causes of chronic kidney disease. We further developed diagnostic models to improve the ability to predict the risk of developing DKD by screening potential risk factors using univariate and multivariate logistic regression analysis. Calibration plots and curve analysis were used to validate the model and clinical usefulness. Next, we screened patients with relatively normal estimated glomerular filtration rate (eGFR) (≥90 mL/min/1.73 m2) to investigate whether tubular injury markers could accurately predict the risk of DKD in patients with normal renal function. We defined the rate of GFR decline as a prognostic indicator of renal function in patients and collected the information of the re-hospitalized DKD patients to determine whether the relevant indicators had an impact on the renal prognosis. Results: The patients with DKD had higher levels of tubular injury markers than patients with DM. URBP, α1-MG, eGFR were statistically different in both univariate and multivariate logistic regression analyses and displayed great predictive power after modeling with an area under curve of 0.987. The calibration curve showed medium agreement. Decision curve showed it would add more net benefits for clinical decision. After adjusting eGFR and serum creatinine (Scr), URBP was demonstrated to be associated with early renal function impairment. Conclusion: Tubular injury markers play an important role in early diabetic renal function impairment.

16.
IEEE Trans Med Imaging ; 42(10): 2988-2999, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37155408

RESUMO

Semi-supervised learning (SSL) is a promising machine learning paradigm to address the ubiquitous issue of label scarcity in medical imaging. The state-of-the-art SSL methods in image classification utilise consistency regularisation to learn unlabelled predictions which are invariant to input level perturbations. However, image level perturbations violate the cluster assumption in the setting of segmentation. Moreover, existing image level perturbations are hand-crafted which could be sub-optimal. In this paper, we propose MisMatch, a semi-supervised segmentation framework based on the consistency between paired predictions which are derived from two differently learnt morphological feature perturbations. MisMatch consists of an encoder and two decoders. One decoder learns positive attention for foreground on unlabelled data thereby generating dilated features of foreground. The other decoder learns negative attention for foreground on the same unlabelled data thereby generating eroded features of foreground. We normalise the paired predictions of the decoders, along the batch dimension. A consistency regularisation is then applied between the normalised paired predictions of the decoders. We evaluate MisMatch on four different tasks. Firstly, we develop a 2D U-net based MisMatch framework and perform extensive cross-validation on a CT-based pulmonary vessel segmentation task and show that MisMatch statistically outperforms state-of-the-art semi-supervised methods. Secondly, we show that 2D MisMatch outperforms state-of-the-art methods on an MRI-based brain tumour segmentation task. We then further confirm that 3D V-net based MisMatch outperforms its 3D counterpart based on consistency regularisation with input level perturbations, on two different tasks including, left atrium segmentation from 3D CT images and whole brain tumour segmentation from 3D MRI images. Lastly, we find that the performance improvement of MisMatch over the baseline might originate from its better calibration. This also implies that our proposed AI system makes safer decisions than the previous methods.


Assuntos
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Calibragem , Átrios do Coração , Aprendizado de Máquina , Aprendizado de Máquina Supervisionado , Processamento de Imagem Assistida por Computador
17.
Neurology ; 101(16): e1581-e1593, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37604659

RESUMO

BACKGROUND AND OBJECTIVES: Cadaveric studies have shown disease-related neurodegeneration and other morphological abnormalities in the retina of individuals with Parkinson disease (PD); however, it remains unclear whether this can be reliably detected with in vivo imaging. We investigated inner retinal anatomy, measured using optical coherence tomography (OCT), in prevalent PD and subsequently assessed the association of these markers with the development of PD using a prospective research cohort. METHODS: This cross-sectional analysis used data from 2 studies. For the detection of retinal markers in prevalent PD, we used data from AlzEye, a retrospective cohort of 154,830 patients aged 40 years and older attending secondary care ophthalmic hospitals in London, United Kingdom, between 2008 and 2018. For the evaluation of retinal markers in incident PD, we used data from UK Biobank, a prospective population-based cohort where 67,311 volunteers aged 40-69 years were recruited between 2006 and 2010 and underwent retinal imaging. Macular retinal nerve fiber layer (mRNFL), ganglion cell-inner plexiform layer (GCIPL), and inner nuclear layer (INL) thicknesses were extracted from fovea-centered OCT. Linear mixed-effects models were fitted to examine the association between prevalent PD and retinal thicknesses. Hazard ratios for the association between time to PD diagnosis and retinal thicknesses were estimated using frailty models. RESULTS: Within the AlzEye cohort, there were 700 individuals with prevalent PD and 105,770 controls (mean age 65.5 ± 13.5 years, 51.7% female). Individuals with prevalent PD had thinner GCIPL (-2.12 µm, 95% CI -3.17 to -1.07, p = 8.2 × 10-5) and INL (-0.99 µm, 95% CI -1.52 to -0.47, p = 2.1 × 10-4). The UK Biobank included 50,405 participants (mean age 56.1 ± 8.2 years, 54.7% female), of whom 53 developed PD at a mean of 2,653 ± 851 days. Thinner GCIPL (hazard ratio [HR] 0.62 per SD increase, 95% CI 0.46-0.84, p = 0.002) and thinner INL (HR 0.70, 95% CI 0.51-0.96, p = 0.026) were also associated with incident PD. DISCUSSION: Individuals with PD have reduced thickness of the INL and GCIPL of the retina. Involvement of these layers several years before clinical presentation highlight a potential role for retinal imaging for at-risk stratification of PD.


Assuntos
Doença de Parkinson , Células Ganglionares da Retina , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Masculino , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/epidemiologia , Tomografia de Coerência Óptica/métodos , Estudos Retrospectivos , Estudos Prospectivos , Estudos Transversais , Fibras Nervosas , Retina/diagnóstico por imagem
18.
JAMA Psychiatry ; 80(5): 478-487, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36947045

RESUMO

Importance: The potential association of schizophrenia with distinct retinal changes is of clinical interest but has been challenging to investigate because of a lack of sufficiently large and detailed cohorts. Objective: To investigate the association between retinal biomarkers from multimodal imaging (oculomics) and schizophrenia in a large real-world population. Design, Setting, and Participants: This cross-sectional analysis used data from a retrospective cohort of 154 830 patients 40 years and older from the AlzEye study, which linked ophthalmic data with hospital admission data across England. Patients attended Moorfields Eye Hospital, a secondary care ophthalmic hospital with a principal central site, 4 district hubs, and 5 satellite clinics in and around London, United Kingdom, and had retinal imaging during the study period (January 2008 and April 2018). Data were analyzed from January 2022 to July 2022. Main Outcomes and Measures: Retinovascular and optic nerve indices were computed from color fundus photography. Macular retinal nerve fiber layer (RNFL) and ganglion cell-inner plexiform layer (mGC-IPL) thicknesses were extracted from optical coherence tomography. Linear mixed-effects models were used to examine the association between schizophrenia and retinal biomarkers. Results: A total of 485 individuals (747 eyes) with schizophrenia (mean [SD] age, 64.9 years [12.2]; 258 [53.2%] female) and 100 931 individuals (165 400 eyes) without schizophrenia (mean age, 65.9 years [13.7]; 53 253 [52.8%] female) were included after images underwent quality control and potentially confounding conditions were excluded. Individuals with schizophrenia were more likely to have hypertension (407 [83.9%] vs 49 971 [48.0%]) and diabetes (364 [75.1%] vs 28 762 [27.6%]). The schizophrenia group had thinner mGC-IPL (-4.05 µm, 95% CI, -5.40 to -2.69; P = 5.4 × 10-9), which persisted when investigating only patients without diabetes (-3.99 µm; 95% CI, -6.67 to -1.30; P = .004) or just those 55 years and younger (-2.90 µm; 95% CI, -5.55 to -0.24; P = .03). On adjusted analysis, retinal fractal dimension among vascular variables was reduced in individuals with schizophrenia (-0.14 units; 95% CI, -0.22 to -0.05; P = .001), although this was not present when excluding patients with diabetes. Conclusions and Relevance: In this study, patients with schizophrenia had measurable differences in neural and vascular integrity of the retina. Differences in retinal vasculature were mostly secondary to the higher prevalence of diabetes and hypertension in patients with schizophrenia. The role of retinal features as adjunct outcomes in patients with schizophrenia warrants further investigation.


Assuntos
Hipertensão , Esquizofrenia , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Masculino , Células Ganglionares da Retina , Estudos Retrospectivos , Estudos Transversais , Esquizofrenia/diagnóstico por imagem , Retina/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Imagem Multimodal
19.
Mol Biol Rep ; 39(1): 269-75, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21625865

RESUMO

MicroRNAs (miRNAs) are small non-coding RNA molecules that function as negative regulators of gene expression. Common genetic variants (single nucleotide polymorphisms, SNPs) in miRNA genes may alter their expression or maturation resulting in varied functional consequences. Until now, several studies had evaluated the association between the polymorphisms in the hsa-miR-196a2 rs11614913 and cancer risk in diverse populations and in multiple types of cancer, with contradictory outcomes. Therefore, here we performed a meta-analysis to address the association between this polymorphism and cancer risk. A total of nine studies involving 6,540 cases and 7,562 controls were retrieved based on PubMed. Our analysis demonstrated that hsa-miR-196a2 rs11614913 CC genotype significantly increased the cancer risk in homozygote comparison model compared to TT genotype (OR=1.18; 95% CI, 1.01-1.68). Moreover, significant association of this polymorphism with breast cancer was found based on homozygote comparison model (OR=1.30; 95% CI, 1.01-1.26) and dominant model (OR=1.11; 95% CI, 1.01-1.23). In addition, hsa-miR-196a2 rs11614913 CC genotype was significantly associated with cancer risk in Chinese and Indian (OR=1.21; 95% CI, 1.05-1.40), but not in Caucasians (OR=1.03; 95% CI, 0.89-1.19). Taken together, our results indicate that the polymorphism of hsa-miR-196a2 rs11614913 is associated with cancer susceptibility, especially with breast cancer and in Chinese and Indian populations.


Assuntos
Neoplasias da Mama/etnologia , Neoplasias da Mama/genética , Predisposição Genética para Doença/etnologia , Predisposição Genética para Doença/genética , MicroRNAs/genética , Povo Asiático/genética , Feminino , Estudos de Associação Genética , Homozigoto , Humanos , Polimorfismo de Nucleotídeo Único/genética , População Branca/genética
20.
Transl Vis Sci Technol ; 11(7): 12, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35833885

RESUMO

Purpose: To externally validate a deep learning pipeline (AutoMorph) for automated analysis of retinal vascular morphology on fundus photographs. AutoMorph has been made publicly available, facilitating widespread research in ophthalmic and systemic diseases. Methods: AutoMorph consists of four functional modules: image preprocessing, image quality grading, anatomical segmentation (including binary vessel, artery/vein, and optic disc/cup segmentation), and vascular morphology feature measurement. Image quality grading and anatomical segmentation use the most recent deep learning techniques. We employ a model ensemble strategy to achieve robust results and analyze the prediction confidence to rectify false gradable cases in image quality grading. We externally validate the performance of each module on several independent publicly available datasets. Results: The EfficientNet-b4 architecture used in the image grading module achieves performance comparable to that of the state of the art for EyePACS-Q, with an F1-score of 0.86. The confidence analysis reduces the number of images incorrectly assessed as gradable by 76%. Binary vessel segmentation achieves an F1-score of 0.73 on AV-WIDE and 0.78 on DR HAGIS. Artery/vein scores are 0.66 on IOSTAR-AV, and disc segmentation achieves 0.94 in IDRID. Vascular morphology features measured from the AutoMorph segmentation map and expert annotation show good to excellent agreement. Conclusions: AutoMorph modules perform well even when external validation data show domain differences from training data (e.g., with different imaging devices). This fully automated pipeline can thus allow detailed, efficient, and comprehensive analysis of retinal vascular morphology on color fundus photographs. Translational Relevance: By making AutoMorph publicly available and open source, we hope to facilitate ophthalmic and systemic disease research, particularly in the emerging field of oculomics.


Assuntos
Aprendizado Profundo , Técnicas de Diagnóstico Oftalmológico , Fundo de Olho , Fotografação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA