Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Immunopharmacol Immunotoxicol ; 45(6): 672-681, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37339357

RESUMO

BACKGROUND: Mast cells (MCs) are important effector cells in anaphylaxis and anaphylactic disease. 3',4',5,7-tetrahydroxyflavone (THF) presents in many medicinal plants and exerts a variety of pharmacological effects. In this study, we evaluated the effect of THF on C48/80-induced anaphylaxis and the mechanisms underlying its effects, including the role of secreted phosphoprotein 1 (SPP1), which has not been reported to IgE-independent MC activation. RESULTS: THF inhibited C48/80-induced Ca2+ flow and degranulation via the PLCγ/PKC/IP3 pathway in vitro. RNA-seq showed that THF inhibited the expression of SPP1 and downstream molecules. SPP1 is involved in pseudo-anaphylaxis reactions. Silencing SPP1 affects the phosphorylation of AKT and P38. THF suppressed C48/80-induced paw edema, hypothermia and serum histamine, and chemokines release in vivo. CONCLUSIONS: Our results validated SPP1 is involved in IgE-independent MC activation anaphylactoid reactions. THF inhibited C48/80-mediated anaphylactoid reactions both in vivo and in vitro, suppressed calcium mobilization and inhibited SPP1-related pathways.


Assuntos
Anafilaxia , Humanos , Anafilaxia/induzido quimicamente , Anafilaxia/tratamento farmacológico , Luteolina/farmacologia , Osteopontina/metabolismo , Osteopontina/farmacologia , Mastócitos , Inflamação/metabolismo , Degranulação Celular , Imunoglobulina E/metabolismo
2.
J Environ Manage ; 341: 118054, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148766

RESUMO

Polyvinyl alcohol (PVA), a water-soluble synthetic polymer, is one of the most prevalent non-native polyvinyl alcohols found in the environment. Due to its inherent invisibility, its potential for causing severe environmental pollution is often underestimated. To achieve efficient degradation of PVA in wastewater, a Cu2O@TiO2 composite was synthesized through the modification of titanium dioxide with cuprous oxide, and its photocatalytic degradation of PVA was investigated. The Cu2O@TiO2 composite, supported by titanium dioxide, facilitated photocarrier separation and demonstrated high photocatalytic efficiency. Under alkaline conditions, the composite exhibited a 98% degradation efficiency for PVA solutions and a 58.7% PVA mineralization efficiency. Radical capture experiments and electron paramagnetic resonance (EPR) analyses revealed that superoxide radicals primarily drive the degradation process within the reaction system. Throughout the degradation process, PVA macromolecules are broken down into smaller molecules, including ethanol, and compounds containing aldehyde, ketone, and carboxylic acid functional groups. Although the intermediate products exhibit reduced toxicity compared to PVA, they still pose certain toxic hazards. Consequently, further research is necessary to minimize the environmental impact of these degradation products.


Assuntos
Processos Fotoquímicos , Álcool de Polivinil , Poluentes Químicos da Água , Catálise , Luz , Titânio , Água , Poluentes Químicos da Água/química
3.
J Environ Manage ; 318: 115595, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35772268

RESUMO

Intimate coupling of photocatalysis and biodegradation (ICPB) is considered a promising approach for the degradation of recalcitrant organic compounds. In this work, using Trichoderma with benzene degradation ability coupled with activated sludge as a biological source and sugarcane bagasse cellulose composite as a carrier, the ICPB system showed excellent degradation and mineralization of trichlorobenzene under visible light induction. The biofilm inside the ICPB carrier can degrade and mineralize the photocatalytic products. ICPB increased the degradation efficiency of 1,2,3-TCB and 1,3,5-TCB by 12.43% and 4.67%, respectively, compared to photocatalysis alone. The biofilms inside the ICPB carriers can mineralize photocatalytic products, which increases the mineralization efficiency by 18.74%. According to the analysis of intermediates, the degradation of 1,2,3-TCB in this coupled system involved stepwise dechlorination and ring opening. The biofilm in ICPB carrier evolved to be enriched in Cutaneotrichosporon, Trichoderma, Apiotrichum, Zoogloea, Dechloromonas, Flavihumibacter and Cupriavidus, which are known for biodegradable aromatic hydrocarbon and halogenate. Novel microbial seeds supplemented with Trichoderma-based ICPB seem to provide a new potential strategy for effective degradation and mineralization of TCB.


Assuntos
Celulose , Saccharum , Bactérias/metabolismo , Biodegradação Ambiental , Celulose/metabolismo , Clorobenzenos , Titânio
4.
Zhongguo Yi Liao Qi Xie Za Zhi ; 46(3): 254-258, 2022 May 30.
Artigo em Zh | MEDLINE | ID: mdl-35678431

RESUMO

The high incidence of cardiovascular diseases is a serious threat to human health, and endovascular surgery has become the standard treatment for most interventional cardiovascular diseases. The robotassisted endovascular surgery system further enhances surgeons' ability to perform minimally invasive endovascular procedures in interventional cardiology. This study presents a new robotic technique for coronary intervention from the perspective of clinical application. Aiming at clinical application scenarios, this scheme proposed an intuitive guide wire catheter mechanism design, which accurately and perfectly simulates the doctor's hand movements, realizes the positive and negative direction translation of the guide wire catheter, accurate torque control of the guide wire rotation and locking. The results of animal test showed that the R-OneTM has a high degree of dexterity, accuracy and stability,and meets the clinical needs.


Assuntos
Doenças Cardiovasculares , Procedimentos Cirúrgicos Robóticos , Robótica , Animais , Cateterismo , Desenho de Equipamento
5.
J Biol Chem ; 293(13): 4735-4751, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29378845

RESUMO

Estrogen receptor α (ERα) action plays an important role in pancreatic ß-cell function and survival; thus, it is considered a potential therapeutic target for the treatment of type 2 diabetes in women. However, the mechanisms underlying the protective effects of ERα remain unclear. Because ERα regulates mitochondrial metabolism in other cell types, we hypothesized that ERα may act to preserve insulin secretion and promote ß-cell survival by regulating mitochondrial-endoplasmic reticulum (EndoRetic) function. We tested this hypothesis using pancreatic islet-specific ERα knockout (PERαKO) mice and Min6 ß-cells in culture with Esr1 knockdown (KD). We found that Esr1-KD promoted reactive oxygen species production that associated with reduced fission/fusion dynamics and impaired mitophagy. Electron microscopy showed mitochondrial enlargement and a pro-fusion phenotype. Mitochondrial cristae and endoplasmic reticulum were dilated in Esr1-KD compared with ERα replete Min6 ß-cells. Increased expression of Oma1 and Chop was paralleled by increased oxygen consumption and apoptosis susceptibility in ERα-KD cells. In contrast, ERα overexpression and ligand activation reduced both Chop and Oma1 expression, likely by ERα binding to consensus estrogen-response element sites in the Oma1 and Chop promoters. Together, our findings suggest that ERα promotes ß-cell survival and insulin secretion through maintenance of mitochondrial fission/fusion-mitophagy dynamics and EndoRetic function, in part by Oma1 and Chop repression.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Receptor alfa de Estrogênio/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Animais , Sobrevivência Celular , Receptor alfa de Estrogênio/genética , Feminino , Insulina/genética , Insulina/metabolismo , Metaloproteases/biossíntese , Metaloproteases/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição CHOP/biossíntese , Fator de Transcrição CHOP/genética
6.
Adv Exp Med Biol ; 1043: 257-284, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29224099

RESUMO

Women in the modern era are challenged with facing menopausal symptoms as well as heightened disease risk associated with increasing adiposity and metabolic dysfunction for up to three decades of life. Treatment strategies to combat metabolic dysfunction and associated pathologies have been hampered by our lack of understanding regarding the biological causes of these clinical conditions and our incomplete understanding regarding the effects of estrogens and the tissue-specific functions and molecular actions of its receptors. In this chapter we provide evidence supporting a critical and protective role for skeletal muscle estrogen receptor α in the maintenance of metabolic homeostasis and insulin sensitivity. Studies identifying the critical ER-regulated pathways essential for disease prevention will lay the important foundation for the rational design of novel therapeutic strategies to improve the health of women while limiting secondary complications that have plagued traditional hormone replacement interventions.


Assuntos
Metabolismo Energético , Estrogênios/metabolismo , Resistência à Insulina , Músculo Esquelético/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Terapia de Reposição de Estrogênios , Feminino , Homeostase , Humanos , Masculino , Menopausa/metabolismo , Doenças Metabólicas/metabolismo , Doenças Metabólicas/fisiopatologia , Doenças Metabólicas/prevenção & controle , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Receptores de Estrogênio/efeitos dos fármacos , Transdução de Sinais
7.
J Biol Chem ; 290(9): 5566-81, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25468909

RESUMO

Obesity is associated with increased breast cancer (BrCA) incidence. Considering that inactivation of estrogen receptor (ER)α promotes obesity and metabolic dysfunction in women and female mice, understanding the mechanisms and tissue-specific sites of ERα action to combat metabolic-related disease, including BrCA, is of clinical importance. To study the role of ERα in adipose tissue we generated fat-specific ERα knock-out (FERKO) mice. Herein we show that ERα deletion increased adipocyte size, fat pad weight, and tissue expression and circulating levels of the secreted glycoprotein, lipocalin 2 (Lcn2), an adipokine previously associated with BrCA development. Chromatin immunoprecipitation and luciferase reporter studies showed that ERα binds the Lcn2 promoter to repress its expression. Because adipocytes constitute an important cell type of the breast microenvironment, we examined the impact of adipocyte ERα deletion on cancer cell behavior. Conditioned medium from ERα-null adipocytes and medium containing pure Lcn2 increased proliferation and migration of a subset of BrCA cells in culture. The proliferative and promigratory effects of ERα-deficient adipocyte-conditioned medium on BrCA cells was reversed by Lcn2 deletion. BrCA cell responsiveness to exogenous Lcn2 was heightened in cell types where endogenous Lcn2 expression was minimal, but components of the Lcn2 signaling pathway were enriched, i.e. SLC22A17 and 3-hydroxybutyrate dehydrogenase (BDH2). In breast tumor biopsies from women diagnosed with BrCA we found that BDH2 expression was positively associated with adiposity and circulating Lcn2 levels. Collectively these data suggest that reduction of ERα expression in adipose tissue promotes adiposity and is linked with the progression and severity of BrCA via increased adipocyte-specific Lcn2 production and enhanced tumor cell Lcn2 sensitivity.


Assuntos
Proteínas de Fase Aguda/metabolismo , Tecido Adiposo/metabolismo , Receptor alfa de Estrogênio/metabolismo , Lipocalinas/metabolismo , Obesidade/metabolismo , Proteínas Oncogênicas/metabolismo , Células 3T3-L1 , Proteínas de Fase Aguda/genética , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo/citologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Receptor alfa de Estrogênio/genética , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Immunoblotting , Lipocalina-2 , Lipocalinas/sangue , Lipocalinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/genética , Proteínas Oncogênicas/sangue , Proteínas Oncogênicas/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Mol Cell Proteomics ; 11(7): M111.011056, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22375075

RESUMO

It is known that estrogen receptors can function as nuclear receptors and transcription factors in the nucleus and as signaling molecules in the plasma membrane. In addition, the localization of the receptors in mitochondria suggests that they may play important roles in mitochondria. In order to identify novel proteins that are involved in ERα-mediated actions of estrogens, we used a proteomic method that integrated affinity purification, two-dimensional gel electrophoresis, and mass spectrometry to isolate and identify cellular proteins that interact with ERα. One of the proteins identified was trifunctional protein ß-subunit (HADHB), a mitochondrial protein that is required for ß-oxidation of fatty acids in mitochondria. We have verified the interaction between ERα and HADHB by coimmunoprecipitation and established that ERα directly binds to HADHB by performing an in vitro binding assay. In addition, we have shown that ERα colocalizes with HADHB in the mitochondria by confocal microscopy, and the two proteins interact with each other within mitochondria by performing coimmunoprecipitation using purified mitochondria as starting materials. We have demonstrated that the expression of ERα affects HADHB activity, and a combination of 17ß-estrodiol and tamoxifen affects the activity of HADHB prepared from human breast cancer cells that express ERα but not from the cells that are ERα deficient. Furthermore, we have demonstrated that 17ß-estrodiol plus tamoxifen affects the association of ERα with HADHB in human cell extract. Our results suggest that HADHB is a functional molecular target of ERα in the mitochondria, and the interaction may play an important role in the estrogen-mediated lipid metabolism in animals and humans.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Mitocôndrias/metabolismo , Complexos Multienzimáticos/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Eletroforese em Gel Bidimensional , Escherichia coli , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Imunoprecipitação , Microscopia Confocal , Mitocôndrias/genética , Proteína Mitocondrial Trifuncional , Subunidade beta da Proteína Mitocondrial Trifuncional , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/genética , Plasmídeos , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/farmacologia , Espectrometria de Massas em Tandem , Transfecção
9.
Sci Adv ; 10(14): eadl0389, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569044

RESUMO

The dynamin-related guanosine triphosphatase, Drp1 (encoded by Dnm1l), plays a central role in mitochondrial fission and is requisite for numerous cellular processes; however, its role in muscle metabolism remains unclear. Here, we show that, among human tissues, the highest number of gene correlations with DNM1L is in skeletal muscle. Knockdown of Drp1 (Drp1-KD) promoted mitochondrial hyperfusion in the muscle of male mice. Reduced fatty acid oxidation and impaired insulin action along with increased muscle succinate was observed in Drp1-KD muscle. Muscle Drp1-KD reduced complex II assembly and activity as a consequence of diminished mitochondrial translocation of succinate dehydrogenase assembly factor 2 (Sdhaf2). Restoration of Sdhaf2 normalized complex II activity, lipid oxidation, and insulin action in Drp1-KD myocytes. Drp1 is critical in maintaining mitochondrial complex II assembly, lipid oxidation, and insulin sensitivity, suggesting a mechanistic link between mitochondrial morphology and skeletal muscle metabolism, which is clinically relevant in combatting metabolic-related diseases.


Assuntos
Insulinas , Succinato Desidrogenase , Animais , Humanos , Masculino , Camundongos , Insulinas/metabolismo , Lipídeos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Succinato Desidrogenase/metabolismo
10.
Biofactors ; 49(1): 140-152, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35861676

RESUMO

Asthma is a heterogeneous disease related to numerous inflammatory cells, among which mast cells play an important role in the early stages of asthma. Therefore, treatment of asthma targeting mast cells is of great research value. α-Asarone is an important anti-inflammatory component of the traditional Chinese medicine Acorus calamus L, which has a variety of medicinal values. To investigate whether α-asarone can alleviate asthma symptoms and its mechanism. In this study, we investigated the effect of α-asarone on mast cell activation in vivo and in vitro. The release of chemokines or cytokines, AHR (airway hyperresponsiveness), and mast cell activation were examined in a mast cell-dependent asthma model. Western blot was performed to determine the underlying pathway. α-Asarone inhibited the degranulation of LAD2 (laboratory allergic disease 2) cells and decreased IL-8, MCP-1, histamine, and TNF-α in vitro. α-Asarone reduced paw swelling and leakage of Evans blue, as well as serum histamine, CCL2, and TNF-α in vivo. In the asthma model, α-asarone showed an inhibitory effect on AHR, inflammation, mast cells activation, infiltration of inflammatory cells, and the release of IL-5 and IL-13 in lung tissue. α-Asarone decreased the levels of phosphorylated JAK2, phosphorylated ERK, and phosphorylated STAT3 induced by C48/80. Our findings suggest that α-asarone alleviates allergic asthma by inhibiting mast cell activation through the ERK/JAK2-STAT3 pathway.


Assuntos
Asma , Mastócitos , Humanos , Asma/induzido quimicamente , Asma/metabolismo , Citocinas/metabolismo , Histamina/metabolismo , Histamina/farmacologia , Janus Quinase 2/efeitos adversos , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sistema de Sinalização das MAP Quinases
11.
J Cachexia Sarcopenia Muscle ; 14(5): 2126-2142, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37469245

RESUMO

BACKGROUND: DJ-1 is a causative gene for Parkinson's disease. DJ-1-deficient mice develop gait-associated progressive behavioural abnormalities and hypoactive forearm grip strength. However, underlying activity mechanisms are not fully explored. METHODS: Western blotting and quantitative real-time polymerase chain reaction approaches were adopted to analyse DJ-1 expression in skeletal muscle from aged humans or mice and compared with young subjects. Skeletal muscle-specific-DJ-1 knockout (MDKO) mice were generated, followed by an assessment of the physical activity phenotypes (grip strength, maximal load capacity, and hanging, rotarod, and exercise capacity tests) of the MDKO and control mice on the chow diet. Muscular atrophy phenotypes (cross-sectional area and fibre types) were determined by imaging and quantitative real-time polymerase chain reaction. Mitochondrial function and skeletal muscle morphology were evaluated by oxygen consumption rate and electron microscopy, respectively. Tail suspension was applied to address disuse atrophy. RNA-seq analysis was performed to indicate molecular changes in muscles with DJ-1 ablation. Dual-luciferase reporter assays were employed to identify the promoter region of Trim63 and Fbxo32 genes, which were indirectly regulated by DJ-1 via the FoxO1 pathway. Cytoplasmic and nuclear fractions of DJ-1-deleted muscle cells were analysed by western blotting. Compound 23 was administered into the gastrocnemius muscle to mimic the of DJ-1 deletion effects. RESULTS: DJ-1 expression decreased in atrophied muscles of aged human (young men, n = 2; old with aged men, n = 2; young women, n = 2; old with aged women, n = 2) and immobilization mice (n = 6, P < 0.01). MDKO mice exhibited no body weight difference compared with control mice on the chow diet (Flox, n = 8; MDKO, n = 9). DJ-1-deficient muscles were slightly dystrophic (Flox, n = 7; MDKO, n = 8; P < 0.05), with impaired physical activities and oxidative capacity (n = 8, P < 0.01). In disuse-atrophic conditions, MDKO mice showed smaller cross-sectional area (n = 5, P < 0.01) and more central nuclei than control mice (Flox, n = 7; MDKO, n = 6; P < 0.05), without alteration in muscle fibre types (Flox, n = 6; MDKO, n = 7). Biochemical analysis indicated that reduced mitochondrial function and upregulated of atrogenes induced these changes. Furthermore, RNA-seq analysis revealed enhanced activity of the FoxO1 signalling pathway in DJ-1-ablated muscles, which was responsible for the induction of atrogenes. Finally, compound 23 (an inhibitor of DJ-1) could mimic the effects of DJ-1 ablation in vivo. CONCLUSIONS: Our results illuminate the crucial of skeletal muscle DJ-1 in the regulation of catabolic signals from mechanical stimulation, providing a therapeutic target for muscle wasting diseases.


Assuntos
Músculo Esquelético , Transtornos Musculares Atróficos , Masculino , Humanos , Animais , Feminino , Camundongos , Idoso , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Transtornos Musculares Atróficos/metabolismo , Mitocôndrias/metabolismo
12.
Cell Rep ; 42(5): 112499, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37178122

RESUMO

Physical activity is associated with beneficial adaptations in human and rodent metabolism. We studied over 50 complex traits before and after exercise intervention in middle-aged men and a panel of 100 diverse strains of female mice. Candidate gene analyses in three brain regions, muscle, liver, heart, and adipose tissue of mice indicate genetic drivers of clinically relevant traits, including volitional exercise volume, muscle metabolism, adiposity, and hepatic lipids. Although ∼33% of genes differentially expressed in skeletal muscle following the exercise intervention are similar in mice and humans independent of BMI, responsiveness of adipose tissue to exercise-stimulated weight loss appears controlled by species and underlying genotype. We leveraged genetic diversity to generate prediction models of metabolic trait responsiveness to volitional activity offering a framework for advancing personalized exercise prescription. The human and mouse data are publicly available via a user-friendly Web-based application to enhance data mining and hypothesis development.


Assuntos
Adaptação Fisiológica , Transcriptoma , Masculino , Pessoa de Meia-Idade , Humanos , Feminino , Camundongos , Animais , Transcriptoma/genética , Obesidade/metabolismo , Aclimatação , Tecido Adiposo/metabolismo , Músculo Esquelético/metabolismo
13.
Biochem Biophys Res Commun ; 427(2): 305-8, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23000159

RESUMO

Estrogen receptors are localized in mitochondria, but their functions in this organelle remain unclear. We previously found that ERα interacted with mitochondrial protein HADHB and affected the thiolytic cleavage activity of HADHB in ß-oxidation. It is known that ERß binds to ERα. In addition, ERß is predominately located in mitochondria. These facts led us to speculate that ERß may also be associated with HADHB in mitochondria. In order to test this hypothesis, we performed co-immunoprecipitation and confocal microscopy analyses with human breast cancer MCF7 cells. The results demonstrated that ERß was indeed associated and colocalized with HADHB within mitochondria. Interestingly, in contrast to the stimulatory effect of ERα on HADHB enzyme activity observed in the previous study, silencing of ERß enhanced the enzyme activity of HADHB in the present study, suggesting that ERß plays an inhibitory role in HADHB enzyme activity in the breast cancer cells. Our results imply that ERα and ERß may differentially affect cellular oxidative stress through influencing the rate of ß-oxidation of fatty acids in breast cancer cells.


Assuntos
Receptor beta de Estrogênio/metabolismo , Mitocôndrias/metabolismo , Complexos Multienzimáticos/metabolismo , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Humanos , Proteína Mitocondrial Trifuncional , Subunidade beta da Proteína Mitocondrial Trifuncional
14.
Elife ; 112022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35416774

RESUMO

Skeletal muscle plays an integral role in coordinating physiological homeostasis, where signaling to other tissues via myokines allows for coordination of complex processes. Here, we aimed to leverage natural genetic correlation structure of gene expression both within and across tissues to understand how muscle interacts with metabolic tissues. Specifically, we performed a survey of genetic correlations focused on myokine gene regulation, muscle cell composition, cross-tissue signaling, and interactions with genetic sex in humans. While expression levels of a majority of myokines and cell proportions within skeletal muscle showed little relative differences between males and females, nearly all significant cross-tissue enrichments operated in a sex-specific or hormone-dependent fashion; in particular, with estradiol. These sex- and hormone-specific effects were consistent across key metabolic tissues: liver, pancreas, hypothalamus, intestine, heart, visceral, and subcutaneous adipose tissue. To characterize the role of estradiol receptor signaling on myokine expression, we generated male and female mice which lack estrogen receptor α specifically in skeletal muscle (MERKO) and integrated with human data. These analyses highlighted potential mechanisms of sex-dependent myokine signaling conserved between species, such as myostatin enriched for divergent substrate utilization pathways between sexes. Several other putative sex-dependent mechanisms of myokine signaling were uncovered, such as muscle-derived tumor necrosis factor alpha (TNFA) enriched for stronger inflammatory signaling in females compared to males and GPX3 as a male-specific link between glycolytic fiber abundance and hepatic inflammation. Collectively, we provide a population genetics framework for inferring muscle signaling to metabolic tissues in humans. We further highlight sex and estradiol receptor signaling as critical variables when assaying myokine functions and how changes in cell composition are predicted to impact other metabolic organs.


The muscles that are responsible for voluntary movements such as exercise are called skeletal muscles. These muscles secrete proteins called myokines, which play roles in a variety of processes by interacting with other tissues. Essentially, myokines allow skeletal muscles to communicate with organs such as the kidneys, the liver or the brain, which is essential for the body to keep its metabolic balance. Some of the process myokines are involved include inflammation, cancer, the changes brought about by exercise, and even cognition. Despite the clear relevance of myokines to so many physiological outcomes, the way these proteins are regulated and their effects are not well understood. Genetic sex ­ specified by sex chromosomes in mammals ­ contributes to critical aspects of physiology. Specifically, many of the metabolic traits impacted by myokines show striking differences arising from hormonal or genetic interactions depending on the genetic sex of the subject being studied. It is therefore important to consider genetic sex when studying the effects of myokines on the body. Velez, Van et al. wanted to gain a better understanding of how skeletal muscles interact with metabolic tissues such as pancreas, liver and brain, taking genetic sex into consideration. To do this they surveyed human datasets for the correlations between the activity of genes that code for myokines, the composition of muscle cells, the signaling between muscles and metabolic tissues and genetic sex. Their results showed that, genetic sex and sex hormones predicted most of the effects of skeletal muscle on other tissues. For example, myokines from muscle were predicted to be more impactful on liver or pancreas, depending on whether individuals were male or female, respectively. The results of Velez, Van et al. illustrate the importance of considering the effects of genetic sex and sexual hormones when studying metabolism. In the future, these results will allow other researchers to design sex-specific experiments to be able to gather more accurate information about the mechanisms of myokine signaling.


Assuntos
Citocinas , Receptores de Estradiol , Animais , Citocinas/metabolismo , Feminino , Variação Genética , Hormônios Esteroides Gonadais/metabolismo , Masculino , Camundongos , Músculo Esquelético/metabolismo , Receptores de Estradiol/metabolismo
15.
Polymers (Basel) ; 14(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36365767

RESUMO

1,2,4 trichlorobenzene (1,2,4-TrCB) is a persistent organic pollutant with chemical stability, biological toxicity, and durability, which has a significant adverse impact on the ecological environment and human health. In order to solve the pollution problem, bagasse cellulose is used as the basic framework and nano TiO2 is used as the photocatalyst to prepare composite carriers with excellent performance. Based on this, an intimate coupling of photocatalysis and biodegradation (ICPB) system combining photocatalysis and microorganisms is constructed. We use the combined technology for the first time to deal with the pollution problem of 1,2,4-TrCB. The biofilm in the composite carrier can decompose the photocatalytic products so that the removal rate of 1,2,4-TrCB is 68.01%, which is 14.81% higher than those of biodegradation or photocatalysis alone, and the mineralization rate is 50.30%, which is 11.50% higher than that of photocatalysis alone. The degradation pathways and mechanisms of 1,2,4-TrCB are explored, which provide a theoretical basis and potential application for the efficient degradation of 1,2,4-TrCB and other refractory organics by the ICPB system.

16.
Diabetes ; 71(11): 2256-2271, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35713959

RESUMO

In addition to the significant role in physical activity, skeletal muscle also contributes to health through the storage and use of macronutrients associated with energy homeostasis. However, the mechanisms of regulating integrated metabolism in skeletal muscle are not well-defined. Here, we compared the skeletal muscle transcriptome from obese and lean control subjects in different species (human and mouse) and found that interferon regulatory factor 4 (IRF4), an inflammation-immune transcription factor, conservatively increased in obese subjects. Thus, we investigated whether IRF4 gain of function in the skeletal muscle predisposed to obesity and insulin resistance. Conversely, mice with specific IRF4 loss in skeletal muscle showed protection against the metabolic effects of high-fat diet, increased branched-chain amino acids (BCAA) level of serum and muscle, and reprogrammed metabolome in serum. Mechanistically, IRF4 could transcriptionally upregulate mitochondrial branched-chain aminotransferase (BCATm) expression; subsequently, the enhanced BCATm could counteract the effects caused by IRF4 deletion. Furthermore, we demonstrated that IRF4 ablation in skeletal muscle enhanced mitochondrial activity, BCAA, and fatty acid oxidation in a BCATm-dependent manner. Taken together, these studies, for the first time, established IRF4 as a novel metabolic driver of macronutrients via BCATm in skeletal muscle in terms of diet-induced obesity.


Assuntos
Aminoácidos de Cadeia Ramificada , Fatores Reguladores de Interferon , Músculo Esquelético , Obesidade , Animais , Humanos , Camundongos , Aminoácidos de Cadeia Ramificada/metabolismo , Ácidos Graxos/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Metaboloma , Músculo Esquelético/metabolismo , Obesidade/genética , Obesidade/metabolismo
17.
Science ; 377(6613): 1399-1406, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36137043

RESUMO

Tissue-tissue communication by endocrine factors is a vital mechanism for physiologic homeostasis. A systems genetics analysis of transcriptomic and functional data from a cohort of diverse, inbred strains of mice predicted that coagulation factor XI (FXI), a liver-derived protein, protects against diastolic dysfunction, a key trait of heart failure with preserved ejection fraction. This was confirmed using gain- and loss-of-function studies, and FXI was found to activate the bone morphogenetic protein (BMP)-SMAD1/5 pathway in the heart. The proteolytic activity of FXI is required for the cleavage and activation of extracellular matrix-associated BMP7 in the heart, thus inhibiting genes involved in inflammation and fibrosis. Our results reveal a protective role of FXI in heart injury that is distinct from its role in coagulation.


Assuntos
Proteína Morfogenética Óssea 7 , Fator XI , Insuficiência Cardíaca , Fígado , Miocárdio , Animais , Proteína Morfogenética Óssea 7/metabolismo , Fator XI/genética , Fator XI/metabolismo , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Inflamação/genética , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Proteólise
18.
Nat Commun ; 13(1): 6661, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333379

RESUMO

Parkin, an E3 ubiquitin ligase, plays an essential role in mitochondrial quality control. However, the mechanisms by which Parkin connects mitochondrial homeostasis with cellular metabolism in adipose tissue remain unclear. Here, we demonstrate that Park2 gene (encodes Parkin) deletion specifically from adipose tissue protects mice against high-fat diet and aging-induced obesity. Despite a mild reduction in mitophagy, mitochondrial DNA content and mitochondrial function are increased in Park2 deficient white adipocytes. Moreover, Park2 gene deletion elevates mitochondrial biogenesis by increasing Pgc1α protein stability through mitochondrial superoxide-activated NAD(P)H quinone dehydrogenase 1 (Nqo1). Both in vitro and in vivo studies show that Nqo1 overexpression elevates Pgc1α protein level and mitochondrial DNA content and enhances mitochondrial activity in mouse and human adipocytes. Taken together, our findings indicate that Parkin regulates mitochondrial homeostasis by balancing mitophagy and Pgc1α-mediated mitochondrial biogenesis in white adipocytes, suggesting a potential therapeutic target in adipocytes to combat obesity and obesity-associated disorders.


Assuntos
Mitofagia , Biogênese de Organelas , Camundongos , Humanos , Animais , Mitofagia/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Adipócitos Brancos/metabolismo , Adiposidade , Ubiquitina-Proteína Ligases/metabolismo , Obesidade/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
19.
Trends Mol Med ; 27(1): 31-46, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33020031

RESUMO

Decrements in metabolic health elevate disease risk, including type 2 diabetes, heart disease, and certain cancers. Thus, treatment strategies to combat metabolic dysfunction are needed. Reduced ESR1 (estrogen receptor, ERα) expression is observed in muscle from women, men, and animals presenting clinical features of the metabolic syndrome. Human studies of natural expression of ESR1 in metabolic tissues show that muscle expression of ESR1 is positively correlated with markers of metabolic health, including insulin sensitivity. Herein, we highlight the important impact of ERα on mitochondrial form and function and present how these actions of the receptor govern metabolic homeostasis. Studies identifying ERα-regulated pathways for disease prevention will lay the foundation for the design of novel therapeutics to improve the health of women while limiting secondary complications that have plagued traditional hormone replacement interventions.


Assuntos
Metabolismo Energético , Receptor alfa de Estrogênio/metabolismo , Homeostase , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Mitocôndrias/metabolismo , Animais , Suscetibilidade a Doenças , Receptor alfa de Estrogênio/genética , Humanos , Resistência à Insulina , Mitocôndrias/genética , Especificidade de Órgãos
20.
Physiol Rep ; 9(21): e15068, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34755487

RESUMO

The metabolic syndrome is a cluster of conditions that increase an individual's risk of developing diseases. Being physically active throughout life is known to reduce the prevalence and onset of some aspects of the metabolic syndrome. Furthermore, previous studies have demonstrated that an individual's gut microbiome composition has a large influence on several aspects of the metabolic syndrome. However, the mechanism(s) by which physical activity may improve metabolic health are not well understood. We sought to determine if endurance exercise is sufficient to prevent or ameliorate the development of the metabolic syndrome and its associated diseases. We also analyzed the impact of physical activity under metabolic syndrome progression upon the gut microbiome composition. Utilizing whole-body low-density lipoprotein receptor (LDLR) knockout mice on a "Western Diet," we show that long-term exercise acts favorably upon glucose tolerance, adiposity, and liver lipids. Exercise increased mitochondrial abundance in skeletal muscle but did not reduce liver fibrosis, aortic lesion area, or plasma lipids. Lastly, we observed several changes in gut bacteria and their novel associations with metabolic parameters of clinical importance. Altogether, our results indicate that exercise can ameliorate some aspects of the metabolic syndrome progression and alter the gut microbiome composition.


Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica/fisiopatologia , Condicionamento Físico Animal/métodos , Adiposidade , Animais , Glucose/metabolismo , Fígado/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Síndrome Metabólica/terapia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Corrida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA