Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Plant Biotechnol J ; 22(4): 929-945, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009862

RESUMO

The control of flowering time in maize is crucial for reproductive success and yield, and it can be influenced by environmental stresses. Using the approaches of Ac/Ds transposon and transposable element amplicon sequencing techniques, we identified a Ds insertion mutant in the ZmPRR37 gene. The Ds insertion showed a significant correlation with days to anthesis. Further research indicated that ZmPRR37-CR knockout mutants exhibited early flowering, whereas ZmPRR37-overexpression lines displayed delayed flowering compared to WT under long-day (LD) conditions. We demonstrated that ZmPRR37 repressed the expression of ZmNF-YC2 and ZmNF-YA3 to delay flowering. Association analysis revealed a significant correlation between flowering time and a SNP2071-C/T located upstream of ZmPRR37. The SNP2071-C/T impacted the binding capacity of ZmELF6 to the promoter of ZmPRR37. ZmELF6 also acted as a flowering suppressor in maize under LD conditions. Notably, our study unveiled that ZmPRR37 can enhance salt stress tolerance in maize by directly regulating the expression of ABA-responsive gene ZmDhn1. ZmDhn1 negatively regulated maize salt stress resistance. In summary, our findings proposed a novel pathway for regulating photoperiodic flowering and responding to salt stress based on ZmPRR37 in maize, providing novel insights into the integration of abiotic stress signals into floral pathways.


Assuntos
Flores , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/fisiologia , Zea mays/genética , Zea mays/metabolismo , Fotoperíodo , Regiões Promotoras Genéticas , Regulação da Expressão Gênica de Plantas/genética
2.
Biomacromolecules ; 25(6): 3345-3359, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38700942

RESUMO

The management of diabetic ulcers poses a significant challenge worldwide, and persistent hyperglycemia makes patients susceptible to bacterial infections. Unfortunately, the overuse of antibiotics may lead to drug resistance and prolonged infections, contributing to chronic inflammation and hindering the healing process. To address these issues, a photothermal therapy technique was incorporated in the preparation of wound dressings. This innovative solution involved the formulation of a self-healing and injectable hydrogel matrix based on the Schiff base structure formed between the oxidized Bletilla striata polysaccharide (BSP) and hydroxypropyltrimethylammonium chloride chitosan. Furthermore, the introduction of CuO nanoparticles encapsulated in polydopamine imparted excellent photothermal properties to the hydrogel, which promoted the release of berberine (BER) loaded on the nanoparticles and boosted the antibacterial performance. In addition to providing a reliable physical protection to the wound, the developed hydrogel, which integrated the herbal components of BSP and BER, effectively accelerated wound closure via microenvironment regulation, including alleviated inflammatory reaction, stimulated re-epithelialization, and reduced oxidative stress based on the promising results from cell and animal experiments. These impressive outcomes highlighted their clinical potential in safeguarding the wound against bacterial intrusion and managing diabetic ulcers.


Assuntos
Quitosana , Hidrogéis , Polissacarídeos , Cicatrização , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Terapia Fototérmica/métodos , Camundongos , Humanos , Berberina/farmacologia , Berberina/química , Ratos , Diabetes Mellitus Experimental/tratamento farmacológico , Cobre/química , Cobre/farmacologia , Masculino , Polímeros/química , Polímeros/farmacologia , Indóis/química , Indóis/farmacologia , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Nanopartículas/química , Staphylococcus aureus/efeitos dos fármacos , Nanopartículas Metálicas/química
3.
Ecotoxicol Environ Saf ; 269: 115772, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043413

RESUMO

Triclosan (TCS) is a broad-spectrum antibacterial chemical widely presents in people's daily lives. Epidemiological studies have revealed that TCS exposure may affect female puberty development. However, the developmental toxicity after low-dose TCS continuous exposure remains to be confirmed. In our study, 8-week-old ICR female mice were continuously exposed to TCS (30, 300, 3000 µg/kg/day) or vehicle (corn oil) from 2 weeks before mating to postnatal day 21 (PND 21) of F1 female mice, while F1 female mice were treated with TCS intragastric administration from PND 22 until PND 56. Vaginal opening (VO) observation, hypothalamic-pituitary-ovarian (HPO) axis related hormones and genes detection, and ovarian transcriptome analysis were carried out to investigate the effects of TCS exposure on puberty onset. Meanwhile, human granulosa-like tumor cell lines (KGN cells) were exposed to TCS to further explore the biological mechanism of the ovary in vitro. The results showed that long-term exposure to low-dose TCS led to approximately a 3-day earlier puberty onset in F1 female mice. Moreover, TCS up-regulated the secretion of estradiol (E2) and the expression of ovarian steroidogenesis genes. Notably, ovarian transcriptomes analysis as well as bidirectional validation in KGN cells suggested that L-type calcium channels and Pik3cd were involved in TCS-induced up-regulation of ovarian-related hormones and genes. In conclusion, our study demonstrated that TCS interfered with L-type calcium channels and activated Pik3cd to up-regulate the expression of ovarian steroidogenesis and related genes, thereby inducing the earlier puberty onset in F1 female mice.


Assuntos
Puberdade Precoce , Triclosan , Animais , Feminino , Humanos , Camundongos , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Estradiol/metabolismo , Camundongos Endogâmicos ICR , Puberdade , Puberdade Precoce/induzido quimicamente , Triclosan/efeitos adversos , Triclosan/toxicidade , Classe I de Fosfatidilinositol 3-Quinases/efeitos dos fármacos
4.
Rapid Commun Mass Spectrom ; 37(7): e9466, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36597914

RESUMO

RATIONALE: The polymerized impurities in oxacillin sodium can induce allergic reaction, which can seriously threaten the health of patients. Gel filtration chromatography (GFC) is currently widely used for the analysis of polymerized impurities, but it has drawbacks. To effectively control the polymerized impurities in oxacillin sodium, a high-performance size exclusion chromatography (HPSEC) method and a reversed-phase high performance liquid chromatography (RP-HPLC) method were established to replace the classical GFC method. METHODS: By studying the chromatographic behavior of polymerized impurities and small molecular weight impurities in both methods with different chromatographic separation mechanisms, the polymerized impurities in oxacillin sodium were separated and detected effectively. Column-switching two-dimensional liquid chromatography was applied to eluted polymerized impurities from the HPSEC method for oxacillin sodium. Ion trap/time-of-flight mass spectrometry was applied to characterize the structures of polymerized impurities and unknown impurities eluted from the HPSEC/RP-HPLC method for oxacillin sodium. RESULTS: The structures of 25 unknown impurities in oxacillin sodium were elucidated based on the high-resolution massn data. Thirteen polymerized impurities were found and characterized. The corresponding relationship of impurities between the two methods was established and the specificity of the two methods was compared. The RP-HPLC method for analysis of the polymerized impurities not only has higher column efficiency and more specificity than the HPSEC method, but also higher sensitivity. CONCLUSIONS: The mechanisms of the formation of degradation impurities in oxacillin sodium were studied. The newly established RP-HPLC methods could effectively separate and detect polymerized impurities and unknown impurities in oxacillin sodium. The study of the impurity profile in oxacillin sodium provided a scientific basis for the improvement of official monographs in pharmacopoeias.


Assuntos
Cromatografia de Fase Reversa , Contaminação de Medicamentos , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia em Gel , Cromatografia Gasosa-Espectrometria de Massas
5.
Ecotoxicol Environ Saf ; 260: 115059, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37257344

RESUMO

Thermal processing is one of the important techniques for most of the plant-based food and herb medicines before consumption and application in order to meet the specific requirement. The plant and herbs are rich in amino acids and reducing sugars, and thermal processing may lead to Maillard reaction, resulting as a high risk of acrylamide pollution. Acrylamide, an organic pollutant that can be absorbed by the body through the respiratory tract, digestive tract, skin and mucous membranes, has potential carcinogenicity, neurological, genetic, reproductive and developmental toxicity. Therefore, it is significant to conduct pollution determination and risk assessment for quality assurance and security of medication. This review demonstrates state-of-the-art research of acrylamide focusing on the toxicity, formation, contamination, determination, and mitigation in taking food and herb medicine, to provide reference for scientific processing and ensure the security of consumers.


Assuntos
Acrilamida , Temperatura Alta , Acrilamida/toxicidade , Reação de Maillard , Manipulação de Alimentos/métodos , Extratos Vegetais , Contaminação de Alimentos/análise
6.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003478

RESUMO

The healing process of a diabetic wound (DW) is often impeded by a series of interrelated factors, including severe infection, persistent inflammation, and excessive oxidative stress. Therefore, it is particularly crucial to develop a medical dressing that can address these issues simultaneously. To this end, different ratios of Bletilla striata polysaccharide (BSP) and berberine (BER) were physically blended with Carbomer 940 (CBM940) to develop a composite hydrogel as a medical dressing. The BSP/BER hydrogel was characterized using SEM, FTIR, rheological testing and other techniques. The anti-inflammatory, antioxidant, and antibacterial properties of the hydrogel were evaluated using cell and bacterial models in vitro. A DW model of ICR mice was established to evaluate the effect of the hydrogel on DW healing in vivo. The hydrogel exhibited excellent biocompatibility and remarkable antibacterial, anti-inflammatory, and antioxidant properties. In addition, animal experiments showed that the BSP/BER hydrogel significantly accelerated wound healing in DW mice. Among the different formulations, the LBSP/BER hydrogel (2% BSP, mBER:mBSP = 1:40) demonstrated the most remarkable efficacy. In conclusion, the BSP/BER hydrogel developed exhibited immense properties and great potential as a medical dressing for the repair of DW, addressing a crucial need in clinical practice.


Assuntos
Berberina , Diabetes Mellitus , Animais , Camundongos , Hidrogéis/farmacologia , Berberina/farmacologia , Berberina/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Camundongos Endogâmicos ICR , Cicatrização , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Bandagens , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia
7.
Rapid Commun Mass Spectrom ; 36(23): e9399, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36114650

RESUMO

RATIONALE: Reversed-phase, high-performance liquid chromatography (RP-HPLC) and high-performance size exclusion chromatography (HPSEC) methods were developed to effectively separate unknown impurities and polymerized impurities in cefamandole nafate. The liquid chromatography-tandem ion trap/time-of-flight mass spectrometry (LC-IT-TOF-MS) was applied to characterize the structures of the impurities. Ultraviolet (UV) spectrum characteristics and mass spectrum characteristics of △3 -isomer and 7-epimer in cefamandole nafate were studied to distinguish the isomers. METHODS: RPLC-IT-TOF-MS was used to characterize the structures of unknown impurities and polymerized impurities eluted from the C18 column. On this basis, the two-dimensional (2D) HPSEC-IT-TOF-MS was used to confirm the structures of polymerized impurities eluted from the TSK-gel G2000SWxl column. Complete fragmentation patterns of impurities were studied and used to obtain information about the structures of the impurities. RESULTS: The structures of 19 unknown impurities in cefamandole nafate were elucidated based on the high-resolution MSn data with both positive and negative modes, assisted by the UV spectra and stress testing, of which 2 impurities were polymerized impurities. Cefamandole nafate produced a series of degradation impurities, and another principal component cefamandole acid also produced a series of similar degradation impurities. The disciplines between mass fragmentation pattern/UV spectrum and structure for △3 -isomer and 7-epimer were presented to distinguish their structures. CONCLUSIONS: The results of this study provided a scientific basis for the improvement of official monographs in pharmacopoeias to effectively control the impurities and ensure drug safety for the public. This study also revealed the formation mechanisms of degradation impurities in cefamandole nafate, which may guide industry to improve the manufacturing process and storage conditions to reduce the content of impurities in products.


Assuntos
Cefamandol , Contaminação de Medicamentos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas , Cromatografia em Gel , Cromatografia Líquida/métodos
8.
Prep Biochem Biotechnol ; 52(4): 383-393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34339343

RESUMO

The optimization of extraction of Tetrastigma hemsleyanum Diels et Gilg polysaccharides (THP) using ultrasonic with enzyme method and its monosaccharide compositions and antioxidant activity were investigated in this work. Single-factor experiments and response surface methodology (RSM) were performed to optimize conditions for extraction, and the independent variables were (XA) dosage of cellulase, (XB) extraction time, (XC) ultrasonic power, and (XD) ratio of water to the material. The extraction rate of THP was increased effectively under the optimum conditions, and the maximum (4.692 ± 0.059%) was well-matched the predicted value from RSM. THP was consisted of mannose, glucuronic acid, rhamnose, galacturonic acid, glucose, galactose, and arabinose, while glucose was the dominant (26.749 ± 0.634%). According to the total antioxidant capacity assay with the FRAP method, DPPH, and hydroxyl radical scavenging assay, THP showed strong antioxidant activity with a dose-dependent behavior. The results indicated that THP has the potential to be a novel antioxidant and could expand its application in food and medicine.


Assuntos
Antioxidantes , Vitaceae , Antioxidantes/química , Glucose , Monossacarídeos , Polissacarídeos/química , Vitaceae/química
9.
Neurochem Res ; 46(6): 1423-1434, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33675461

RESUMO

A growing number of studies have shown that air fine particulate matter (PM2.5) pollution is closely associated with neuroinflammation in humans. Militarine, a glucosyloxybenzyl 2-isobutylmalate compound isolated from Bletilla striata, has been found to exert significant neuroprotective effects. However, the anti-inflammatory, antioxidant and antiapoptotic effects of militarine on PM2.5-stimulated BV-2 microglial cells have not been reported. This study aimed to investigate the protective effects of militarine against PM2.5-induced cytotoxicity and its mechanism in BV-2 microglial cells. Our results revealed that pretreatment with 0.31-1.25 µg/mL militarine reversed the morphological changes caused by PM2.5 and decreased proinflammatory cytokine generation and gene expression in PM2.5-treated BV-2 cells. In particular, tumor necrosis factor-α and interleukin-6 expression was inhibited in a dose-dependent manner. Notably, militarine markedly inhibited the upregulation of Toll-like receptor 4, Toll-like receptor 2, and cyclo-oxygenase-2 expression at both the mRNA and protein levels and reduced NF-κB pathway-associated protein expression. Immunofluorescence analysis showed that militarine suppressed NF-κB activity through inhibiting p65 nuclear translocation. Our data suggested that militarine alleviated neuroinflammation in BV-2 microglial cells, possibly by inhibiting the expression of neuroinflammatory cytokines through the TLR/NF-κB signaling pathway. Additionally, militarine significantly reduced PM2.5-mediated reactive oxygen species (ROS) generation and cell apoptosis and restored the mitochondrial membrane potential (MMP; ΔΨm). Collectively, these findings demonstrate that militarine played a protective role against PM2.5-induced damage in BV-2 cells by exerting anti-inflammatory, antioxidant, and antiapoptotic effects.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Material Particulado/toxicidade , Succinatos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Citocinas/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo
10.
Macromol Rapid Commun ; 42(14): e2100154, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34142406

RESUMO

The hierarchically bicontinuous polystyrene monoliths (HBPMs) with homogeneous skeletons and glycopolymer surfaces are fabricated for the first time based on the medium internal phase emulsion (MIPE) templating method via activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP). The synergistic self-assembly of amphiphilic diblock glycopolymer (ADG) and Pluronic F127 (PF127) at the oil/water interface via hydrogen bonding interaction contributes to the formation of bicontinuous MIPE with deformed neighboring water droplets, resulting in the highly interconnected HBPM after polymerization. There is a bimodal pore size distribution in the HBPM, that is, through pores (150-5000 nm) and mesopores (10-150 nm). The HBPMs as prepared show excellent biocompatibility, homogeneous skeletons, strong mechanical strength, and high bed permeability, overcoming the practical limitations of the second generation of polystyrene (PS) monoliths. Glycoprotein concanavalin A (Con A) can be easily and quickly separated by the HBPM in hydrophilic interaction chromatography (HILIC) mode. These results suggest the HBPMs have great potentials in catalysis, separations, and biomedical applications.


Assuntos
Poliestirenos , Esqueleto , Concanavalina A , Interações Hidrofóbicas e Hidrofílicas , Polimerização
11.
Rapid Commun Mass Spectrom ; 33(12): 1058-1066, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-30907019

RESUMO

RATIONALE: The toxicities of the impurities of a drug will affect the clinical effects and cause potential health risk; therefore, it is essential to study profiles of the impurities. In this study, a new structural type of component and two acid degradation impurities in josamycin were discovered and characterized for the further improvement of official monographs in pharmacopoeias. METHODS: The component and acid degradation impurities in josamycin were separated and preliminary characterized by trap-free two-dimensional liquid chromatography coupled to high-resolution ion trap time-of-flight mass spectrometry (2D LC/IT-TOF MS) in both positive and negative electrospray ionization mode. The eluent of each peak from the first dimensional chromatographic system was trapped by a switching valve and subsequently transferred to the second dimensional chromatographic system, which was connected to the mass spectrometer. Full scan MS was firstly conducted to obtain the exact m/z values of the molecules. Then LC/MS/MS and LC/MS/MS/MS experiments were performed on the compounds of interest. RESULTS: A new structural type of component, which was named as josamycin A, and two acid degradation impuritiess, which were identified as impurity I and impurity II, were discovered in josamycin. Their structures and fragmentation pattern were deduced according to MSn data. Furthermore, josamycin A was synthesized and impurity I was separated by preparative HPLC. The structures of josamycin A and the impurities were confirmed by 1 H NMR and 13 C NMR data. CONCLUSIONS: Josamycin A was produced when the hydroxyl group on the macrolide of josamycin was oxidized into a carbonyl group. Impurity I and impurity II were produced by the loss of one molecule of acetyl mycaminose from josamycin and josamycin A, respectively. Compared with josamycin, the experimental results showed that josamycin A had a higher antibacterial activity with similar cytotoxicity, while impurity I had no antibacterial activity but a higher cytotoxicity. As a result, the control of impurity I is significant.

12.
Rapid Commun Mass Spectrom ; 33(17): 1410-1419, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31148276

RESUMO

RATIONALE: Eleven impurities and one polymerized impurity in mezlocillin were identified and their formation mechanisms were investigated in this study. The sources and reasons for the formation of impurities were revealed, which may guide industry to improve the manufacturing process and storage conditions and reduce the content of impurities in products. The results from this study also provided a scientific basis for the improvement of official monographs in pharmacopoeias. METHODS: The impurity profiles and polymerized impurity in mezlocillin were studied by multiple heart-cutting two-dimensional liquid chromatography coupled with ion trap time-of-flight mass spectrometry (2D-LC/IT-TOF MS) in both positive and negative modes of electrospray ionization. Target eluents from the first dimensional chromatography with a non-volatile mobile phase were trapped and sent to the second dimensional chromatography with a volatile mobile phase by a switching valve. The structures of the impurities in the mezlocillin drug substance were deduced based on the high-resolution MSn data. RESULTS: In the environment of water, oxygen, high temperature, acid and base, a series of degradation products could be easily produced from mezlocillin. Mezlocillin was hydrolyzed into impurities I, IV, V and X, and was degraded into impurity III by methanolysis. Mezlocillin was oxidized into sulfoxide by producing impurity XI. Furthermore, impurities VI, VII, VII and IX were all isomers of mezlocillin. The proposed formation pathways of these products were demonstrated in this study. CONCLUSIONS: Eleven degradation impurities and one polymerized impurity in mezlocillin were separated and characterized. Based on characterization of impurities, this study discovered the mechanism of impurity production and provided guidance for manufacturers to improve the process and storage conditions and reduce levels of impurities.

13.
BMC Complement Altern Med ; 19(1): 369, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842843

RESUMO

BACKGROUND: Bletilla striata is a traditional Chinese medicine used to treat hemorrhage, scald, gastric ulcer, pulmonary diseases and inflammations. In this study, we investigated bioactivity of the effective fraction of B. striata (EFB) in reducing the inflammatory cytokine production induced by water or organic extracts of PM2.5. METHODS: PM2.5 extracts were collected and analyzed by chromatographic system and inductively coupled plasma mass spectrometer. Cell viability was measured using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay, and cell supernatant was analyzed by flow cytometry, ELISA, and qRT-PCR in cultured mouse macrophage cell line RAW264.7 treated with EFB and PM2.5 extracts. Expressions of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway were measured by Western blot. RESULTS: PM2.5 composition is complex and the toxicity of PM2.5 extracts were not noticeable. The treatment of EFB at a wide dose-range of 0-40 µg/mL did not cause significant change of RAW264.7 cell proliferation. EFB pretreatment decreased the inflammatory cytokines in the macrophage. Further analysis showed that EFB significantly attenuated PM2.5-induced proinflammatory protein expression and downregulated the levels of phosphorylated NF-κBp65, inhibitor of kappa B (IκB)-α, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38. CONCLUSIONS: Our study demonstrated the potential effectiveness of B. striata extracts for treating PM2.5-triggered pulmonary inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Orchidaceae , Material Particulado/toxicidade , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/química , Sobrevivência Celular/efeitos dos fármacos , Citocinas/análise , Citocinas/genética , Inflamação/metabolismo , Camundongos , Modelos Imunológicos , Extratos Vegetais/química , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia
14.
Rapid Commun Mass Spectrom ; 30(15): 1771-8, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27426453

RESUMO

RATIONALE: The structures of photodegradation impurities in cilnidipine were studied by liquid chromatography/Q-Orbitrap mass spectrometry (LC/Q-Orbitrap MS) for the further improvement of the official monographs in Pharmacopoeias. The complete fragmentation patterns of impurities were investigated to obtain their structural information. Two pathways of photodegradation of cilnidipine were also explored to clarify the source of impurities in cilnidipine. METHODS: Chromatographic separation was performed on a Boston Group C18 column (250 mm × 4.6 mm, 5 µm). The mobile phase consisted of acetonitrile/H2 O at a ratio of 75:25 (v/v). In order to determine the m/z values of the molecular ions and formulas of all detected impurities, full scan LC/MS in both positive and negative ion modes was firstly performed using a Thermo LC system coupled with a Q-Orbitrap high-resolution mass spectrometer. LC/MS/MS analysis was also carried out on target compounds to obtain as much structural information as possible. RESULTS: Five novel photodegradation impurities of cilnidipine were separated and identified based on the high-resolution MS/MS data. Impurity III was synthesized and its structure was confirmed by (1) H-NMR and (13) C-NMR data. Two photodegradation pathways to produce different photodegradation impurities were also revealed in this study. CONCLUSIONS: Among those impurities, impurities II and III were the main impurities which existed in the cilnidipine available on the market. Impurity II (the Z-isomer) was mainly produced when cilnidipine powder was directly exposed to daylight while impurity III (containing a piperidine ring) was mainly produced when cilnidipine was exposed to daylight in an ethanolic solution. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Cromatografia Líquida , Di-Hidropiridinas/química , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Contaminação de Medicamentos , Espectrometria de Massas , Fotólise
15.
Water Environ Res ; 88(1): 79-86, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26803030

RESUMO

This paper analyzed the physico-chemical characteristics of natural waters in a drainage system of the Jungar Basin, northwestern China to identify chemical evolution and recharge mechanisms of natural waters in an arid environment. The waters studied are different in mineralization, but are typically carbonate rivers and alkaline in nature. No Cl-dominated water type occurs, indicating an early stage of water evolution. Regolith and geomorphological parameters controlling ground-surface temperature may play a large role in the geological evolution of the water. Three main morphological and hydrological units are reflected in water physico-chemistry. Climate influences the salinization of natural waters substantially. Direct recharge from seasonal snow and ice-melt water and infiltration of rain to the ground are significant recharge processes for natural waters, but recharge from potential deep groundwater may be less important. The enrichment of ions in lakes has been mainly caused by evaporation rather than through the quality change of the recharged water.


Assuntos
Clima Desértico , Água Subterrânea/análise , Lagos/análise , Rios/química , China , Monitoramento Ambiental , Hidrologia , Chuva/química , Neve/química
16.
J Ethnopharmacol ; 319(Pt 3): 117361, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38380574

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bletilla striata polysaccharides (BSP) extracted from the B. striata tuber, have been demonstrated to possess anti-inflammatory properties. However, their potential protective effect against ARDS and their role in regulating cell pyroptosis remained unexplored. AIM OF THE STUDY: The aim of this study was to investigate the therapeutic effect of BSP in the alleviation of lipopolysaccharide (LPS)-induced ARDS, and to explore its mechanism of action. METHODS: The effect of BSP was assessed by LPS injection into the intraperitoneal cavity in vivo; pathological changes of ARDS mice were gauged by immunohistochemical, hematoxylin and eosin staining, and immunofluorescence assays. MH-S cells were used to model the pyroptosis in vitro. Finally, the pyroptosis of alveolar macrophage was detected by western blots, qPCR, and flow cytometry for NLRP3/caspase1/GSDMD and HMGB1/TLR4 pathway-associated proteins and mRNA. RESULTS: BSP could significantly increase the weight and survival rate of mice with ARDS, alleviate the cytokine storm in the lungs, and reduce lung damage in vivo. BSP inhibited the inflammation caused by LPS/Nigericin significantly in vitro. Compared with the control group, there was a remarkable surge in the incidence of pyroptosis observed in ARDS lung tissue and alveolar macrophages, whereas BSP significantly diminished the pyroptosis ratio. Besides, BSP reduced NLRP3/caspase1/GSDMD and HMGB1/TLR4 levels in ARDS lung tissue and MH-S cells. CONCLUSIONS: These findings proved that BSP could improve LPS-induced ARDS via inhibiting pyroptosis, and this effect was mediated by NLRP3/caspase1/GSDMD and HMGB1/TLR4, suggesting a therapeutic potential of BSP as an anti-inflammatory agent for ARDS treatment.


Assuntos
Proteína HMGB1 , Síndrome do Desconforto Respiratório , Animais , Camundongos , Macrófagos Alveolares , Lipopolissacarídeos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Receptor 4 Toll-Like , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Pulmão
17.
Int J Biol Macromol ; 265(Pt 2): 131015, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521298

RESUMO

The anti-inflammatory activity of polysaccharides derived from Melastoma dodecandrum Lour. was evaluated in pyretic mice and HEK-Blue™ hTLR4 cells. The testing led to the identification of MDP2-1, which was then investigated for its structural characteristics and anti-inflammatory effects. Results showed that MDP2-1 had a molecular weight of 29.234 kDa and primarily consisted of galactose, arabinose, rhamnose, glucose, glucuronic acid, and galacturonic acid. Its main backbone was composed of →4)-α-D-GalpA-(1→, →2)-α-L-Rhap-(1→, →3,4)-α-D-GalpA-(1→, →2,4)-α-D-GlcpA-(1→, and its side chains were connected by →4)-α-D-Galp-(1→, α-D-Galp-(1→, →4)-ß-D-Glcp-(1→, and α-L-Araf-(1→. In vivo experiments on mice demonstrated that MDP2-1 attenuated LPS-induced acute lung injury, and in vitro experiments on RAW264.7 cells showed that MDP2-1 reduced the levels of inflammatory mediators and mitigated LPS-induced inflammatory damage by inhibiting the activation of the TLR4 downstream NF-κB/MAPK pathway. These findings suggest that MDP2-1 is a novel anti-inflammatory agent for therapeutic interventions.


Assuntos
Lipopolissacarídeos , Polissacarídeos , Camundongos , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Galactose , Glucose , Anti-Inflamatórios/farmacologia
18.
J Ethnopharmacol ; 323: 117732, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38218501

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tetrastigma hemsleyanum Diels et Gilg, is one of the perennial evergreen plants with grass vine, which has obvious curative effect on severe infectious diseases. Although Tetrastigma hemleyanum has long been recognized for its capacity of antipyretic and antitoxic, its specific mechanism is unknown. AIM OF THE STUDY: To evaluate the antipyretic effect of Tetrastigma hemleyanum polysaccharide (THP) on mice with dry yeast-induced fever, and to explore its specific antipyretic mechanism. METHODS: In this study, THP was administered by aerosol in febrile mice. The rectal temperatures of treated animals were monitored at different time points. Histopathological evaluation and various inflammatory indexes were used to assess inflammatory damage. The concentration variations of the central neurotransmitter, endocrine system, substance and energy metabolism indicators were measured to explore the physiological mechanism. Quantitative real-time PCR, Western bolt and Immunohistochemistry were performed to identify the correlation between antipyretic and TLR4/NF-κB signaling pathway. RESULTS: THP reduced the body temperature of febrile mice induced by dry yeast, as well as the levels of thermogenic cytokines and downregulated the contents of thermoregulatory mediators. THP alleviated the pathological damage of liver and hypothalamus caused by fever. In addition, THP decreased the secretion of thyroid hormone, substance and energy metabolism related indicators. Furthermore, THP significantly suppressed TLR4/NF-κB signaling pathway-related indicators. CONCLUSIONS: In conclusion, our results suggest that inhaled THP exerts antipyretic effect by mediating the thermoregulatory mediator, decreasing the content of pyrogenic factors to lower the body temperature, and eventually restoring the high metabolic level in the body to normal via inhibiting TLR4/NF-κB signaling pathway. The study provides a reasonable pharmacodynamic basis for the treatment of polysaccharide in febrile-related diseases.


Assuntos
Antipiréticos , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Antipiréticos/farmacologia , Antipiréticos/uso terapêutico , Saccharomyces cerevisiae , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Febre/tratamento farmacológico , Metabolismo Energético
19.
Int Immunopharmacol ; 137: 112404, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38851163

RESUMO

Ulcerative colitis (UC) is characterized by a chronic and protracted course and often leads to a poor prognosis. Patients with this condition often experience postoperative complications, further complicating the management of their condition. Tetrastigma hemsleyanum polysaccharide (THP) has demonstrated considerable potential as a treatment for inflammatory bowel disease. However, its underlying mechanism in the treatment of UC remains unclear. This study systematically and comprehensively investigated the effects of THP on dextran sulfate-induced UC mice and illustrated its specific mechanism of action. The colon and spleen in UC mice were restored after THP treatment. The levels of key markers, such as secretory immunoglobulin A, ß-defensin, and mucin-2 were increased, collagen deposition and epithelial cell apoptosis were decreased. Notably, THP administration led to increased levels of Ki67 and tight junction proteins in colon tissue and reduced colon tissue permeability. THP contributed to the restored balance of intestinal flora. Furthermore, THP downregulated the expressions of the proinflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-17 and promoted those of the regulatory factors forkhead box protein P3. It also exerted anti-inflammatory effects by promoting suppressor of cytokine signaling (SOCS1) expression and inhibiting the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Our results demonstrated that THP had an efficacy comparable to that of JAK inhibitor in treating UC. In addition, THP might play a role in UC therapy through modulation of the SOCS1/JAK2/STAT3 signaling pathway and remodeling of the intestinal mucosal barrier.

20.
Int J Biol Macromol ; 275(Pt 1): 133427, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936586

RESUMO

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is an disease characterized by pulmonary edema and widespread inflammation, leading to a notably high mortality rate. The dysregulation of both pro-inflammatory and anti-inflammatory systems, results in cytokine storm (CS), is intricately associated with the development of ALI/ARDS. Tetrastigma hemsleyanum polysaccharide (THP) exerts remarkable anti-inflammatory and immunomodulatory effects against the disease, although its precise role in pathogenesis remains unclear. In the present study, an ALI/ARDS model was established using bacterial lipopolysaccharides. THP administration via aerosol inhalation significantly mitigated lung injury, reduced the number of inflammatory cells, and ameliorated glycerophospholipid metabolism. Furthermore, specific CS-related pathways were investigated by examining the synergy between tumor necrosis factor-α and interferon-γ used to establish CS models. The results indicated that THP effectively decreased inflammatory damage and cell death. The RNA sequencing revealed the involvement of the Janus kinase (JAK) 2-signal transducers and activators of transcription (STAT) signaling pathway in exerting the mentioned effects. Additionally, THP inhibited the activation of the JAK-STAT pathway, thereby alleviating the CS both in vivo and in vitro. Overall, THP exhibited marked therapeutic potential against ALI/ARDS and CS, primarily by targeting the IFN-γ-JAK2/STAT signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA