Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Mol Ther ; 32(6): 1849-1874, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38584391

RESUMO

The clinical potential of current FDA-approved chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy is encumbered by its autologous nature, which presents notable challenges related to manufacturing complexities, heightened costs, and limitations in patient selection. Therefore, there is a growing demand for off-the-shelf universal cell therapies. In this study, we have generated universal CAR-engineered NKT (UCAR-NKT) cells by integrating iNKT TCR engineering and HLA gene editing on hematopoietic stem cells (HSCs), along with an ex vivo, feeder-free HSC differentiation culture. The UCAR-NKT cells are produced with high yield, purity, and robustness, and they display a stable HLA-ablated phenotype that enables resistance to host cell-mediated allorejection. These UCAR-NKT cells exhibit potent antitumor efficacy to blood cancers and solid tumors, both in vitro and in vivo, employing a multifaceted array of tumor-targeting mechanisms. These cells are further capable of altering the tumor microenvironment by selectively depleting immunosuppressive tumor-associated macrophages and myeloid-derived suppressor cells. In addition, UCAR-NKT cells demonstrate a favorable safety profile with low risks of graft-versus-host disease and cytokine release syndrome. Collectively, these preclinical studies underscore the feasibility and significant therapeutic potential of UCAR-NKT cell products and lay a foundation for their translational and clinical development.


Assuntos
Células-Tronco Hematopoéticas , Imunoterapia Adotiva , Células T Matadoras Naturais , Receptores de Antígenos Quiméricos , Humanos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Animais , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Camundongos , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Edição de Genes , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/terapia , Neoplasias/imunologia , Linhagem Celular Tumoral , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
2.
Nature ; 557(7707): 696-700, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29769729

RESUMO

The junctions formed at the contact between metallic electrodes and semiconductor materials are crucial components of electronic and optoelectronic devices 1 . Metal-semiconductor junctions are characterized by an energy barrier known as the Schottky barrier, whose height can, in the ideal case, be predicted by the Schottky-Mott rule2-4 on the basis of the relative alignment of energy levels. Such ideal physics has rarely been experimentally realized, however, because of the inevitable chemical disorder and Fermi-level pinning at typical metal-semiconductor interfaces2,5-12. Here we report the creation of van der Waals metal-semiconductor junctions in which atomically flat metal thin films are laminated onto two-dimensional semiconductors without direct chemical bonding, creating an interface that is essentially free from chemical disorder and Fermi-level pinning. The Schottky barrier height, which approaches the Schottky-Mott limit, is dictated by the work function of the metal and is thus highly tunable. By transferring metal films (silver or platinum) with a work function that matches the conduction band or valence band edges of molybdenum sulfide, we achieve transistors with a two-terminal electron mobility at room temperature of 260 centimetres squared per volt per second and a hole mobility of 175 centimetres squared per volt per second. Furthermore, by using asymmetric contact pairs with different work functions, we demonstrate a silver/molybdenum sulfide/platinum photodiode with an open-circuit voltage of 1.02 volts. Our study not only experimentally validates the fundamental limit of ideal metal-semiconductor junctions but also defines a highly efficient and damage-free strategy for metal integration that could be used in high-performance electronics and optoelectronics.

3.
Nature ; 555(7695): 231-236, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29517002

RESUMO

Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

4.
Nano Lett ; 23(7): 2758-2763, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36971471

RESUMO

Periodic assembly of heterogeneous nanoparticles provides a strategy for integrating distinct nanocatalyst blocks where their synergic effects can be explored for diverse applications. To achieve the synergistic enhancement, an intimate clean interface is preferred which however is usually plagued by the bulky surfactant molecules used in the synthesis and assembly process. Herein, we showed the creation of one-dimensional Pt-Au nanowires (NWs) with periodic alternating Pt and Au nanoblocks, by assembling Pt-Au Janus nanoparticles with the assistance of peptide T7 (Ac-TLTTLTN-CONH2). It is demonstrated that the Pt-Au NWs showed much-improved performance in the methanol oxidation reaction (MOR), exhibiting 5.3 times higher specific activity and 2.5 times higher mass activity than the current state-of-the-art commercial Pt/C catalyst. In addition, the periodic heterostructure also improves the stability of Pt-Au NWs in the MOR, where the Pt-Au NWs retained 93.9% of their initial mass activity much higher than commercial Pt/C (30.6%).

5.
Nano Lett ; 19(6): 3730-3736, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31038977

RESUMO

We demonstrate the 2-D anisotropic formation of ultrathin free-floating Pt nanoplates from the assembly of small nanocrystals using T7 peptide (Ac-TLTTLTN-CONH2). As-formed nanoplates are rich in grain boundaries that can promote their catalytic activities. Furthermore, we demonstrate that a minor number of Pd atoms can selectively deposit on and stabilize the grain boundaries, which leads to enhanced structure stability. The Pd-enhanced Pt polycrystal nanoplates show great oxygen reduction reaction activities with 15.5 times higher specific activity and 13.7 times higher mass activity than current state-of-the-art commercial Pt/C electrocatalysts as well as 2.5 times higher mass activity for hydrogen evolution reaction compared with Pt/C.


Assuntos
Nanoestruturas/química , Oxigênio/química , Peptídeos/química , Platina/química , Catálise , Eletricidade , Modelos Moleculares , Nanopartículas/química , Nanopartículas/ultraestrutura , Nanoestruturas/ultraestrutura , Oxirredução , Paládio/química
6.
J Am Chem Soc ; 141(4): 1498-1505, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30475606

RESUMO

The hierarchical control in biogenic minerals, from precise nanomorphology control to subsequent macroscopic assembly, remains a formidable challenge in artificial synthesis. Studies in biomineralization, however, are largely limited to atomic andmolecular scale crystallization, devoting little attention to biomolecular higher-order structures (HOSs) which critically impact long-range assembly of biominerals. Here we demonstrate a biomimetic route and quantitative simulations that explore peptide HOSs on guiding nanocrystal formation and anisotropic assembly into hierarchical structures. It is found that the Pt{100}-specific peptide T7 (Ac-TLTTLTN-CONH2) adopts ST-turn secondary structure, promoting cubic Pt nanocrystal formation at low concentration, and spontaneously transforms into a ß-sheet with increased concentration. The ß-sheet T7-Pt{100} specificity drives cubic Pt nanocrystals to self-assemble into large-area, long-range, [100] linear assemblies. This study provides a robust demonstration for bio/nonbiogenic material specificity, nanoscale synthesis, and long-range self-organization with biomolecular HOSs and opens vast opportunities for multiscale programmable structures.

7.
Arterioscler Thromb Vasc Biol ; 36(8): 1549-57, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27365406

RESUMO

OBJECTIVE: Cathepsin S (CatS) participates in atherogenesis through several putative mechanisms. The ability of cathepsins to modify histone tail is likely to contribute to stem cell development. Histone deacetylase 6 (HDAC6) is required in modulating the proliferation and migration of various types of cancer cells. Here, we investigated the cross talk between CatS and HADC6 in injury-related vascular repair in mice. APPROACH AND RESULTS: Ligation injury to the carotid artery in mice increased the CatS expression, and CatS-deficient mice showed reduced neointimal formation in injured arteries. CatS deficiency decreased the phosphorylation levels of p38 mitogen-activated protein kinase, Akt, and HDAC6 and toll-like receptor 2 expression in ligated arteries. The genetic or pharmacological inhibition of CatS also alleviated the increased phosphorylation of p38 mitogen-activated protein kinase, Akt, and HDAC6 induced by platelet-derived growth factor BB in cultured vascular smooth muscle cells (VSMCs), and p38 mitogen-activated protein kinase inhibition and Akt inhibition decreased the phospho-HDAC6 levels. Moreover, CatS inhibition caused decrease in the levels of the HDAC6 activity in VSMCs in response to platelet-derived growth factor BB. The HDAC6 inhibitor tubastatin A downregulated platelet-derived growth factor-induced VSMC proliferation and migration, whereas HDAC6 overexpression exerted the opposite effect. Tubastatin A also decreased the intimal VSMC proliferation and neointimal hyperplasia in response to injury. Toll-like receptor 2 silencing decreased the phosphorylation levels of p38 mitogen-activated protein kinase, Akt, and HDAC6 and VSMC migration and proliferation. CONCLUSIONS: This is the first report detailing cross-interaction between toll-like receptor 2-mediated CatS and HDAC6 during injury-related vascular repair. These data suggest that CatS/HDAC6 could be a potential therapeutic target for the control of vascular diseases that are involved in neointimal lesion formation.


Assuntos
Lesões das Artérias Carótidas/enzimologia , Artéria Carótida Primitiva/enzimologia , Catepsinas/metabolismo , Histona Desacetilases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 2 Toll-Like/metabolismo , Cicatrização , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/efeitos dos fármacos , Artéria Carótida Primitiva/patologia , Catepsinas/antagonistas & inibidores , Catepsinas/deficiência , Catepsinas/genética , Pontos de Checagem do Ciclo Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Genótipo , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Masculino , Camundongos Knockout , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Neointima , Fenótipo , Fosforilação , Inibidores de Proteases/farmacologia , Interferência de RNA , Transdução de Sinais , Receptor 2 Toll-Like/genética , Transfecção , Remodelação Vascular , Cicatrização/efeitos dos fármacos
8.
Nano Lett ; 16(4): 2762-7, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26950511

RESUMO

Highly open metallic nanoframes represent an emerging class of new nanostructures for advanced catalytic applications due to their fancy outline and largely increased accessible surface area. However, to date, the creation of bimetallic nanoframes with tunable structure remains a challenge. Herein, we develop a simple yet efficient chemical method that allows the preparation of highly composition segregated Pt-Ni nanocrystals with controllable shape and high yield. The selective use of dodecyltrimethylammonium chloride (DTAC) and control of oleylamine (OM)/oleic acid (OA) ratio are critical to the controllable creation of highly composition segregated Pt-Ni nanocrystals. While DTAC mediates the compositional anisotropic growth, the OM/OA ratio controls the shapes of the obtained highly composition segregated Pt-Ni nanocrystals. To the best of our knowledge, this is the first report on composition segregated tetrahexahedral Pt-Ni NCs. Importantly, by simply treating the highly composition segregated Pt-Ni nanocrystals with acetic acid overnight, those solid Pt-Ni nanocrystals can be readily transformed into highly open Pt-Ni nanoframes with hardly changed shape and size. The resulting highly open Pt-Ni nanoframes are high-performance electrocatalysts for both oxygen reduction reaction and alcohol oxidations, which are far better than those of commercial Pt/C catalyst. Our results reported herein suggest that enhanced catalysts can be developed by engineering the structure/composition of the nanocrystals.

9.
Nano Lett ; 16(10): 6337-6342, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27579678

RESUMO

Two-dimensional semiconductors (2DSCs) such as molybdenum disulfide (MoS2) have attracted intense interest as an alternative electronic material in the postsilicon era. However, the ON-current density achieved in 2DSC transistors to date is considerably lower than that of silicon devices, and it remains an open question whether 2DSC transistors can offer competitive performance. A high current device requires simultaneous minimization of the contact resistance and channel length, which is a nontrivial challenge for atomically thin 2DSCs, since the typical low contact resistance approaches for 2DSCs either degrade the electronic properties of the channel or are incompatible with the fabrication process for short channel devices. Here, we report a new approach toward high-performance MoS2 transistors by using a physically assembled nanowire as a lift-off mask to create ultrashort channel devices with pristine MoS2 channel and self-aligned low resistance metal/graphene hybrid contact. With the optimized contact in short channel devices, we demonstrate sub-100 nm MoS2 transistor delivering a record high ON-current of 0.83 mA/µm at 300 K and 1.48 mA/µm at 20 K, which compares well with that of silicon devices. Our study, for the first time, demonstrates that the 2DSC transistors can offer comparable performance to the 2017 target for silicon transistors in International Technology Roadmap for Semiconductors (ITRS), marking an important milestone in 2DSC electronics.

10.
Nano Lett ; 15(11): 7519-25, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26488237

RESUMO

Despite the great success that has been accomplished on the controlled synthesis of Pd nanocrystals with various sizes and morphologies, an efficient approach to systematic production of well-defined Pd nanocrystals without seed-mediated approaches remains a significant challenge. In this work, we have developed an efficient synthetic method to directly produce Pd nanocrystals with a highly controllable feature. Three distinct Pd nanocrystals, namely, Pd nanosheets, Pd concave tetrahedra, and Pd tetrahedra, have been selectively prepared by simply introducing a small amount of ascorbic acid (AA) and/or water without the other synthesis conditions changed. We found that the combined use of AA and water is of importance for the successful production of the unique Pd nanosheets. Detailed catalytic investigations showed that all the obtained Pd nanocrystals exhibit higher activity in the formic acid electrooxidation and styrene hydrogenation with respect to the Pd black, and their activities are highly shape-dependent with Pd nanosheets demonstrating a higher activity than both the Pd concave tetrahedra and Pd tetrahedra, which is likely due to the simple yet important feature of ultrathin thickness of Pd nanosheets. The present work highlights the importance of structures in tuning the related properties of metallic nanocrystals.

11.
Nano Lett ; 15(10): 6295-301, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26373787

RESUMO

We report a highly efficient photocatalyst comprised of Cu7S4@Pd heteronanostructures with plasmonic absorption in the near-infrared (NIR)-range. Our results indicated that the strong NIR plasmonic absorption of Cu7S4@Pd facilitated hot carrier transfer from Cu7S4 to Pd, which subsequently promoted the catalytic reactions on Pd metallic surface. We confirmed such enhancement mechanism could effectively boost the sunlight utilization in a wide range of photocatalytic reactions, including the Suzuki coupling reaction, hydrogenation of nitrobenzene, and oxidation of benzyl alcohol. Even under irradiation at 1500 nm with low power density (0.45 W/cm(2)), these heteronanostructures demonstrated excellent catalytic activities. Under solar illumination with power density as low as 40 mW/cm(2), nearly 80-100% of conversion was achieved within 2 h for all three types of organic reactions. Furthermore, recycling experiments showed the Cu7S4@Pd were stable and could retain their structures and high activity after five cycles. The reported synthetic protocol can be easily extended to other Cu7S4@M (M = Pt, Ag, Au) catalysts, offering a new solution to design and fabricate highly effective photocatalysts with broad material choices for efficient conversion of solar energy to chemical energy in an environmentally friendly manner.

12.
Nano Lett ; 15(5): 3030-4, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25879371

RESUMO

Two-dimensional layered semiconductors such as molybdenum disulfide (MoS2) have attracted tremendous interest as a new class of electronic materials. However, there are considerable challenges in making reliable contacts to these atomically thin materials. Here we present a new strategy by using graphene as the back electrodes to achieve ohmic contact to MoS2. With a finite density of states, the Fermi level of graphene can be readily tuned by a gate potential to enable a nearly perfect band alignment with MoS2. We demonstrate for the first time a transparent contact to MoS2 with zero contact barrier and linear output behavior at cryogenic temperatures (down to 1.9 K) for both monolayer and multilayer MoS2. Benefiting from the barrier-free transparent contacts, we show that a metal-insulator transition can be observed in a two-terminal MoS2 device, a phenomenon that could be easily masked by Schottky barriers found in conventional metal-contacted MoS2 devices. With further passivation by boron nitride (BN) encapsulation, we demonstrate a record-high extrinsic (two-terminal) field effect mobility up to 1300 cm(2)/(V s) in MoS2 at low temperature.


Assuntos
Compostos de Boro/química , Dissulfetos/química , Molibdênio/química , Nanotecnologia , Semicondutores , Eletrodos , Grafite/química , Nanoestruturas
13.
J Am Chem Soc ; 137(50): 15672-5, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26636882

RESUMO

We have developed an efficient strategy for the production of stable ß-palladium hydride (PdH0.43) nanocrystals with controllable shapes and remarkable stability. The as-synthesized PdH0.43 nanocrystals showed impressive stability in air at room temperature for over 10 months, which has enabled the investigation of their catalytic property for the first time. The prepared PdH0.43 nanocrystals served as highly efficient catalysts in the oxidation of methanol, showing higher activity than their Pd counterparts. These studies opened a door for further exploration of ß-palladium hydride-based nanomaterials as a new class of promising catalytic materials and beyond.

14.
Nano Lett ; 13(2): 840-6, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23320831

RESUMO

Surfactants with preferential adsorption to certain crystal facets have been widely employed to manipulate morphologies of colloidal nanocrystals, while mechanisms regarding the origin of facet selectivity remain an enigma. Similar questions exist in biomimetic syntheses concerning biomolecular recognition to materials and crystal surfaces. Here we present mechanistic studies on the molecular origin of the recognition toward platinum {111} facet. By manipulating the conformations and chemical compositions of a platinum {111} facet specific peptide, phenylalanine is identified as the dominant motif to differentiate {111} from other facets. The discovered recognition motif is extended to convert nonspecific peptides into {111} specific peptides. Further extension of this mechanism allows the rational design of small organic molecules that demonstrate preferential adsorption to the {111} facets of both platinum and rhodium nanocrystals. This work represents an advance in understanding the organic-inorganic interfacial interactions in colloidal systems and paves the way to rational and predictable nanostructure modulations for many applications.


Assuntos
Materiais Biomiméticos/química , Nanopartículas Metálicas/química , Peptídeos/química , Platina/química , Adsorção , Materiais Biomiméticos/síntese química , Modelos Moleculares , Tamanho da Partícula , Peptídeos/síntese química , Fenilalanina/química , Propriedades de Superfície
15.
Adv Sci (Weinh) ; : e2400596, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38887178

RESUMO

Early-stage nonalcoholic fatty liver disease (NAFLD) is a silent condition, with most cases going undiagnosed, potentially progressing to liver cirrhosis and cancer. A non-invasive and cost-effective detection method for early-stage NAFLD detection is a public health priority but challenging. In this study, an adhesive, soft on-skin sensor with low electrode-skin contact impedance for early-stage NAFLD detection is fabricated. A method is developed to synthesize platinum nanoparticles and reduced graphene quantum dots onto the on-skin sensor to reduce electrode-skin contact impedance by increasing double-layer capacitance, thereby enhancing detection accuracy. Furthermore, an attention-based deep learning algorithm is introduced to differentiate impedance signals associated with early-stage NAFLD in high-fat-diet-fed low-density lipoprotein receptor knockout (Ldlr-/-) mice compared to healthy controls. The integration of an adhesive, soft on-skin sensor with low electrode-skin contact impedance and the attention-based deep learning algorithm significantly enhances the detection accuracy for early-stage NAFLD, achieving a rate above 97.5% with an area under the receiver operating characteristic curve (AUC) of 1.0. The findings present a non-invasive approach for early-stage NAFLD detection and display a strategy for improved early detection through on-skin electronics and deep learning.

16.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585760

RESUMO

Volumetric functional imaging of transient cellular signaling and motion dynamics poses a significant challenge to current microscopy techniques, primarily due to limitations in hardware bandwidth and the restricted photon budget within short exposure times. In response to this challenge, we present squeezed light field microscopy (SLIM), a computational imaging method that enables rapid detection of high-resolution three-dimensional (3D) light signals using only a single, low-format camera sensor area. SLIM pushes the boundaries of 3D optical microscopy, achieving over one thousand volumes per second across a large field of view of 550 µm in diameter and 300 µm in depth. Using SLIM, we demonstrated blood cell velocimetry across the embryonic zebrafish brain and in a free-moving tail exhibiting high-frequency swinging motion. The millisecond temporal resolution also enables accurate voltage imaging of neural membrane potentials in the leech ganglion. These results collectively establish SLIM as a versatile and robust imaging tool for high-speed microscopy applications.

17.
Bioeng Transl Med ; 9(1): e10616, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193119

RESUMO

The characterization of atherosclerotic plaques to predict their vulnerability to rupture remains a diagnostic challenge. Despite existing imaging modalities, none have proven their abilities to identify metabolically active oxidized low-density lipoprotein (oxLDL), a marker of plaque vulnerability. To this end, we developed a machine learning-directed electrochemical impedance spectroscopy (EIS) platform to analyze oxLDL-rich plaques, with immunohistology serving as the ground truth. We fabricated the EIS sensor by affixing a six-point microelectrode configuration onto a silicone balloon catheter and electroplating the surface with platinum black (PtB) to improve the charge transfer efficiency at the electrochemical interface. To demonstrate clinical translation, we deployed the EIS sensor to the coronary arteries of an explanted human heart from a patient undergoing heart transplant and interrogated the atherosclerotic lesions to reconstruct the 3D EIS profiles of oxLDL-rich atherosclerotic plaques in both right coronary and left descending coronary arteries. To establish effective generalization of our methods, we repeated the reconstruction and training process on the common carotid arteries of an unembalmed human cadaver specimen. Our findings indicated that our DenseNet model achieves the most reliable predictions for metabolically vulnerable plaque, yielding an accuracy of 92.59% after 100 epochs of training.

18.
Nat Biotechnol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744947

RESUMO

Cancer immunotherapy with autologous chimeric antigen receptor (CAR) T cells faces challenges in manufacturing and patient selection that could be avoided by using 'off-the-shelf' products, such as allogeneic CAR natural killer T (AlloCAR-NKT) cells. Previously, we reported a system for differentiating human hematopoietic stem and progenitor cells into AlloCAR-NKT cells, but the use of three-dimensional culture and xenogeneic feeders precluded its clinical application. Here we describe a clinically guided method to differentiate and expand IL-15-enhanced AlloCAR-NKT cells with high yield and purity. We generated AlloCAR-NKT cells targeting seven cancers and, in a multiple myeloma model, demonstrated their antitumor efficacy, expansion and persistence. The cells also selectively depleted immunosuppressive cells in the tumor microenviroment and antagonized tumor immune evasion via triple targeting of CAR, TCR and NK receptors. They exhibited a stable hypoimmunogenic phenotype associated with epigenetic and signaling regulation and did not induce detectable graft versus host disease or cytokine release syndrome. These properties of AlloCAR-NKT cells support their potential for clinical translation.

19.
Artigo em Inglês | MEDLINE | ID: mdl-37424697

RESUMO

Abnormal cardiac development is intimately associated with congenital heart disease. During development, a sponge-like network of muscle fibers in the endocardium, known as trabeculation, becomes compacted. Biomechanical forces regulate myocardial differentiation and proliferation to form trabeculation, while the molecular mechanism is still enigmatic. Biomechanical forces, including intracardiac hemodynamic flow and myocardial contractile force, activate a host of molecular signaling pathways to mediate cardiac morphogenesis. While mechanotransduction pathways to initiate ventricular trabeculation is well studied, deciphering the relative importance of hemodynamic shear vs. mechanical contractile forces to modulate the transition from trabeculation to compaction requires advanced imaging tools and genetically tractable animal models. For these reasons, the advent of 4-D multi-scale light-sheet imaging and complementary multiplex live imaging via micro-CT in the beating zebrafish heart and live chick embryos respectively. Thus, this review highlights the complementary animal models and advanced imaging needed to elucidate the mechanotransduction underlying cardiac ventricular development.

20.
World J Clin Cases ; 11(25): 6005-6011, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37727479

RESUMO

BACKGROUND: A carotid-cavernous fistula (CCF) is an abnormal connection between the internal carotid artery (ICA) and the cavernous sinus. Although direct CCFs typically result from trauma or as an iatrogenic complication of neuroendovascular procedures, they can occur as surgery-related complications after mechanical thrombectomy (MT). With the widespread use of MT in patients with acute ischemic stroke complicated with large vessel occlusion, it is important to document CCF following MT and how to avoid them. In this study, we present a case of a patient who developed a CCF following MT and describe in detail the characteristics of ICA tortuosity in this case. CASE SUMMARY: A 60-year-old woman experienced weakness in the left upper and lower limbs as well as difficulty speaking for 4 h. The neurological examination revealed left central facial paralysis and left hemiplegia, with a National Institutes of Health Stroke Scale score of 9. Head magnetic resonance imaging revealed an acute cerebral infarction in the right basal ganglia and radial crown. Magnetic resonance angiography demonstrated an occlusion of the right ICA and middle cerebral artery. Digital subtraction angiography demonstrated distal occlusion of the cervical segment of the right ICA. We performed suction combined with stent thrombectomy. Then, postoperative angiography was performed, which showed a right CCF. One month later, CCF embolization was performed, and the patient's clinical symptoms have significantly improved 5 mo after the operation. CONCLUSION: Although a CCF is a rare complication after MT, it should be considered. Understanding the tortuosity of the internal carotid-cavernous sinus may help predict the complexity of MT and avoid this complication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA