RESUMO
Histone acetylation, including acetylated H3K14 (H3K14ac), is generally linked to gene activation. Monomethylated histone H3 lysine 4 (H3K4me1), together with other gene-activating marks, denotes active genes. In contrast to usual gene-activating functions of H3K14ac and H3K4me1, we here show that the dual histone modification mark H3K4me1-H3K14ac is recognized by ZMYND8 (also called RACK7) and can function to counteract gene expression. We identified ZMYND8 as a transcriptional corepressor of the H3K4 demethylase JARID1D. ZMYND8 antagonized the expression of metastasis-linked genes, and its knockdown increased the cellular invasiveness in vitro and in vivo. The plant homeodomain (PHD) and Bromodomain cassette in ZMYND8 mediated the combinatorial recognition of H3K4me1-H3K14ac and H3K4me0-H3K14ac by ZMYND8. These findings uncover an unexpected role for the signature H3K4me1-H3K14ac in attenuating gene expression and reveal a metastasis-suppressive epigenetic mechanism in which ZMYND8's PHD-Bromo cassette couples H3K4me1-H3K14ac with downregulation of metastasis-linked genes.
Assuntos
Movimento Celular , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias da Próstata/metabolismo , Receptores de Superfície Celular/metabolismo , Acetilação , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Masculino , Camundongos Nus , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Modelos Moleculares , Invasividade Neoplásica , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Receptores de Quinase C Ativada , Receptores de Superfície Celular/genética , Fatores de Tempo , Transcrição Gênica , Transfecção , Carga Tumoral , Proteínas Supressoras de TumorRESUMO
A role for the cytoplasmic protein synphilin-1 in regulating energy balance has been demonstrated recently. Expression of synphilin-1 increases ATP levels in cultured cells. However, the mechanism by which synphilin-1 alters cellular energy status is unknown. Here, we used cell models and biochemical approaches to investigate the cellular functions of synphilin-1 on the AMP-activated protein kinase (AMPK) signaling pathway, which may affect energy balance. Overexpression of synphilin-1 increased AMPK phosphorylation (activation). Moreover, synphilin-1 interacted with AMPK by co-immunoprecipitation and GST (glutathione S-transferase) pull-down assays. Knockdown of synphilin-1 reduced AMPK phosphorylation. Overexpression of synphilin-1 also altered AMPK downstream signaling, i.e., a decrease in acetyl CoA carboxylase (ACC) phosphorylation, and an increase in p70S6K phosphorylation. Treatment of compound C (an AMPK inhibitor) reduced synphilin-1 binding with AMPK. In addition, compound C diminished synphilin-1-induced AMPK phosphorylation, and the increase in cellular ATP (adenosine triphosphate) levels. Our results demonstrated that synphilin-1 couples with AMPK, and they exert mutual effects on each other to regulate cellular energy status. These findings not only identify novel cellular actions of synphilin-1, but also provide new insights into the roles of synphilin-1 in regulating energy currency, ATP.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Acetil-CoA Carboxilase/metabolismo , Células HEK293 , Humanos , Fosforilação , Ligação Proteica , Pirazóis/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND: There are few tissue-based biomarkers that can accurately predict prostate cancer (PCa) progression and aggressiveness. We sought to evaluate the clinical utility of prostate and breast overexpressed 1 (PBOV1) as a potential PCa biomarker. METHODS: Patient tumor samples were designated by Grade Groups using the 2014 Gleason grading system. Primary radical prostatectomy tumors were obtained from 48 patients and evaluated for PBOV1 levels using Western blot analysis in matched cancer and benign cancer-adjacent regions. Immunohistochemical evaluation of PBOV1 was subsequently performed in 80 cancer and 80 benign cancer-adjacent patient samples across two tissue microarrays (TMAs) to verify protein levels in epithelial tissue and to assess correlation between PBOV1 proteins and nuclear architectural changes in PCa cells. Digital histomorphometric analysis was used to track 22 parameters that characterized nuclear changes in PBOV1-stained cells. Using a training and test set for validation, multivariate logistic regression (MLR) models were used to identify significant nuclear parameters that distinguish Grade Group 3 and above PCa from Grade Group 1 and 2 PCa regions. RESULTS: PBOV1 protein levels were increased in tumors from Grade Group 3 and above (GS 4 + 3 and ≥ 8) regions versus Grade Groups 1 and 2 (GS 3 + 3 and 3 + 4) regions (P = 0.005) as assessed by densitometry of immunoblots. Additionally, by immunoblotting, PBOV1 protein levels differed significantly between Grade Group 2 (GS 3 + 4) and Grade Group 3 (GS 4 + 3) PCa samples (P = 0.028). In the immunohistochemical analysis, measures of PBOV1 staining intensity strongly correlated with nuclear alterations in cancer cells. An MLR model retaining eight parameters describing PBOV1 staining intensity and nuclear architecture discriminated Grade Group 3 and above PCa from Grade Group 1 and 2 PCa and benign cancer-adjacent regions with a ROC-AUC of 0.90 and 0.80, respectively, in training and test sets. CONCLUSIONS: Our study demonstrates that the PBOV1 protein could be used to discriminate Grade Group 3 and above PCa. Additionally, the PBOV1 protein could be involved in modulating changes to the nuclear architecture of PCa cells. Confirmatory studies are warranted in an independent population for further validation.
Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Análise Serial de TecidosRESUMO
Trimethylated histone H3 lysine 27 (H3K27me3) is linked to gene silencing, whereas H3K4me3 is associated with gene activation. These two marks frequently co-occupy gene promoters, forming bivalent domains. Bivalency signifies repressed but activatable states of gene expression and can be resolved to active, H3K4me3-prevalent states during multiple cellular processes, including differentiation, development and epithelial mesenchymal transition. However, the molecular mechanism underlying bivalency resolution remains largely unknown. Here, we show that the H3K27 demethylase UTX (also called KDM6A) is required for the resolution and activation of numerous retinoic acid (RA)-inducible bivalent genes during the RA-driven differentiation of mouse embryonic stem cells (ESCs). Notably, UTX loss in mouse ESCs inhibited the RA-driven bivalency resolution and activation of most developmentally critical homeobox (Hox) a-d genes. The UTX-mediated resolution and activation of many bivalent Hox genes during mouse ESC differentiation were recapitulated during RA-driven differentiation of human NT2/D1 embryonal carcinoma cells. In support of the importance of UTX in bivalency resolution, Utx-null mouse ESCs and UTX-depleted NT2/D1 cells displayed defects in RA-driven cellular differentiation. Our results define UTX as a bivalency-resolving histone modifier necessary for stem cell differentiation.
Assuntos
Diferenciação Celular/genética , Histona Desmetilases/fisiologia , Proteínas Nucleares/fisiologia , Regiões Promotoras Genéticas , Ativação Transcricional , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Genes Homeobox , Histona Desmetilases/metabolismo , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Tretinoína/farmacologiaRESUMO
Resistance is a significant limitation to the effectiveness of cancer therapies. The PI3K/Akt and MAP kinase pathways play important roles in a variety of normal cellular processes and tumorigenesis. This study is designed to explore the relationship of these signaling pathways with multidrug resistance in prostate cancer (PCa). The PI3K/Akt and MAP kinase pathways were investigated utilizing paclitaxel resistant DU145-TxR PCa cells and their parental non-resistant DU145 cells to determine their relationship with resistance to paclitaxel and other anticancer drugs. Our results demonstrate that the PI3K/Akt and MAP kinase pathways are upregulated in DU145-TxR cells compared to the DU145 cells. Inactivating these pathways using the PI3K/Akt pathway inhibitor LY294002 or the MAP kinase pathway inhibitor PD98059 renders the DU145-TxR cells more sensitive to paclitaxel. We investigated the effects of these inhibitors on other anticancer drugs including docetaxel, vinblastine, doxorubicin, 10-Hydroxycamptothecin (10-HCPT) and cisplatin and find that both inhibitors induces DU145-TxR cells to be more sensitive only to the microtubule-targeting drugs (paclitaxel, docetaxel and vinblastine). Furthermore, the treatment with these inhibitors induces cleaved-PARP production in DU145-TxR cells, suggesting that apoptosis induction might be one of the mechanisms for the reversal of drug resistance. In conclusion, the PI3K/Akt and MAP kinase pathways are associated with resistance to multiple chemotherapeutic drugs. Inactivating these pathways renders these PCa cells more sensitive to microtubule-targeting drugs such as paclitaxel, docetaxel and vinblastine. Combination therapies with novel inhibitors of these two signaling pathways potentially represents a more effective treatment for drug resistant PCa.
Assuntos
Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Neoplasias da Próstata/genética , Transdução de Sinais , Moduladores de Tubulina/farmacologia , Regulação para Cima , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromonas/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavonoides/farmacologia , Humanos , Masculino , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacosRESUMO
Brain-specific carnitine palmitoyltransferase-1 (CPT-1c) is implicated in CNS control of food intake. In this article, we explore the role of hypothalamic CPT-1c in leptin's anorexigenic actions. We first show that adenoviral overexpression of CPT-1c in hypothalamic arcuate nucleus of rats increases food intake and concomitantly up-regulates orexigenic neuropeptide Y (NPY) and Bsx (a transcription factor of NPY). Then, we demonstrate that this overexpression antagonizes the anorectic actions induced by central leptin or compound cerulenin (an inhibitor of fatty acid synthase). The overexpression of CPT-1c also blocks leptin-induced down-regulations of NPY and Bsx. Furthermore, the anorectic actions of central leptin or cerulenin are impaired in mice with brain CPT-1c deleted. Both anorectic effects require elevated levels of hypothalamic arcuate nucleus (Arc) malonyl-CoA, a fatty acid-metabolism intermediate that has emerged as a mediator in hypothalamic control of food intake. Thus, these data suggest that CPT-1c is implicated in malonyl-CoA action in leptin's hypothalamic anorectic signaling pathways. Moreover, ceramide metabolism appears to play a role in leptin's central control of feeding. Leptin treatment decreases Arc ceramide levels, with the decrease being important in leptin-induced anorectic actions and down-regulations of NPY and Bsx. Of interest, our data indicate that leptin impacts ceramide metabolism through malonyl-CoA and CPT-1c, and ceramide de novo biosynthesis acts downstream of both malonyl-CoA and CPT-1c in mediating their effects on feeding and expressions of NPY and Bsx. In summary, we provide insights into the important roles of malonyl-CoA, CPT-1c, and ceramide metabolism in leptin's hypothalamic signaling pathways.
Assuntos
Encéfalo/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Ceramidas/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Leptina/farmacologia , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/fisiologia , Western Blotting , Peso Corporal/efeitos dos fármacos , Carnitina O-Palmitoiltransferase/genética , Cerulenina/farmacologia , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Leptina/administração & dosagem , Masculino , Malonil Coenzima A/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Mucosal Schwann cell hamartomas (MSCHs) are benign neural lesions that are not associated with inherited syndromes and are primarily found in the distal colon. We report the first case of an MSCH in the duodenum. This case highlights the expansive nature of MSCHs and discusses the implications of this finding in the duodenum and in the context of a hematologic malignancy.
RESUMO
In this work, we assessed the ability of computerized features of nuclear morphology from diagnostic biopsy images to predict prostate cancer (CaP) progression in active surveillance (AS) patients. Improved risk characterization of AS patients could reduce over-testing of low-risk patients while directing high-risk patients to therapy. A total of 191 (125 progressors, 66 non-progressors) AS patients from a single site were identified using The Johns Hopkins University's (JHU) AS-eligibility criteria. Progression was determined by pathologists at JHU. 30 progressors and 30 non-progressors were randomly selected to create the training cohort D1 (n = 60). The remaining patients comprised the validation cohort D2 (n = 131). Digitized Hematoxylin & Eosin (H&E) biopsies were annotated by a pathologist for CaP regions. Nuclei within the cancer regions were segmented using a watershed method and 216 nuclear features describing position, shape, orientation, and clustering were extracted. Six features associated with disease progression were identified using D1 and then used to train a machine learning classifier. The classifier was validated on D2. The classifier was further compared on a subset of D2 (n = 47) against pro-PSA, an isoform of prostate specific antigen (PSA) more linked with CaP, in predicting progression. Performance was evaluated with area under the curve (AUC). A combination of nuclear spatial arrangement, shape, and disorder features were associated with progression. The classifier using these features yielded an AUC of 0.75 in D2. On the 47 patient subset with pro-PSA measurements, the classifier yielded an AUC of 0.79 compared to an AUC of 0.42 for pro-PSA. Nuclear morphometric features from digitized H&E biopsies predicted progression in AS patients. This may be useful for identifying AS-eligible patients who could benefit from immediate curative therapy. However, additional multi-site validation is needed.
RESUMO
Background: The RNA-binding motif protein 3 (RBM3) has been shown to be up-regulated in several types of cancer, including prostate cancer (PCa), compared to normal tissues. Increased RBM3 nuclear expression has been linked to improved clinical outcomes. Aims: Given that RBM3 has been hypothesized to play a role in critical nuclear functions such as chromatin remodeling, DNA damage response, and other post-transcriptional processes, we sought to: (1) quantify RBM3 protein levels in archival PCa samples; (2) develop a nuclear morphometric model to determine if measures of RBM3 protein levels and nuclear features could be used to predict disease aggressiveness and biochemical recurrence. Methods & Results: This study utilized two tissue microarrays (TMAs) stained for RBM3 that included 80 total cases of PCa stratified by Gleason score. A software-mediated image processing algorithm identified RBM3-positive cancerous nuclei in the TMA samples and calculated twenty-two features quantifying RBM3 expression and nuclear architecture. Multivariate logistic regression (MLR) modeling was performed to determine if RBM3 levels and nuclear structural changes could predict PCa aggressiveness and biochemical recurrence (BCR). Leave-one-out cross validation (LOOCV) was used to provide insight on how the predictive capabilities of the feature set might behave with respect to an independent patient cohort to address issues such as model overfitting. RBM3 expression was found to be significantly downregulated in highly aggressive GS ≥ 8 PCa samples compared to other Gleason scores (P < 0.0001) and significantly down-regulated in recurrent PCa samples compared to non-recurrent samples (P = 0.0377). An eleven-feature nuclear morphometric MLR model accurately identified aggressive PCa, yielding a receiver operating characteristic area under the curve (ROC-AUC) of 0.90 (P < 0.0001) in the raw data set and 0.77 (95% CI: 0.83-0.97) for LOOCV testing. The same eleven-feature model was then used to predict recurrence, yielding a ROC-AUC of 0.92 (P = 0.0004) in the raw data set and 0.76 (95% CI: 0.64-0.87) for LOOCV testing. Conclusions: The RBM3 biomarker alone is a strong prognostic marker for the prediction of aggressive PCa and biochemical recurrence. Further, RBM3 appears to be down-regulated in aggressive and recurrent tumors.
Assuntos
Biomarcadores Tumorais/metabolismo , Núcleo Celular/patologia , Recidiva Local de Neoplasia/patologia , Neoplasias da Próstata/patologia , Proteínas de Ligação a RNA/metabolismo , Algoritmos , Núcleo Celular/metabolismo , Estudos de Coortes , Humanos , Masculino , Gradação de Tumores , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/cirurgia , Prognóstico , Prostatectomia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/cirurgia , Curva ROCRESUMO
BACKGROUND: Gleason scoring represents the standard for diagnosis of prostate cancer (PCa) and assessment of prognosis following radical prostatectomy (RP), but it does not account for patterns in neighboring normal-appearing benign fields that may be predictive of disease recurrence. OBJECTIVE: To investigate (1) whether computer-extracted image features within tumor-adjacent benign regions on digital pathology images could predict recurrence in PCa patients after surgery and (2) whether a tumor plus adjacent benign signature (TABS) could better predict recurrence compared with Gleason score or features from benign or cancerous regions alone. DESIGN, SETTING, AND PARTICIPANTS: We studied 140 tissue microarray cores (0.6mm each) from 70 PCa patients following surgery between 2000 and 2004 with up to 14 yr of follow-up. Overall, 22 patients experienced recurrence (biochemical [prostate-specific antigen], local, or distant recurrence and cancer death) and 48 did not. INTERVENTION: RP was performed in all patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The top 10 features identified as most predictive of recurrence within both the benign and cancerous regions were combined into a 10-feature signature (TABS). Computer-extracted nuclear shape and architectural features from cancerous regions, adjacent benign fields, and TABS were evaluated via random forest classification accuracy and Kaplan-Meier survival analysis. RESULTS AND LIMITATIONS: Tumor-adjacent benign field features were predictive of recurrence (area under the receiver operating characteristic curve [AUC]: 0.72). Tumor-field nuclear shape descriptors and benign-field local nuclear arrangement were the predominant features found for TABS (AUC: 0.77). Combining TABS with Gleason sum further improved identification of recurrence (AUC: 0.81). All experiments were performed using threefold cross-validation without independent test set validation. CONCLUSIONS: Computer-extracted nuclear features within cancerous and benign regions predict recurrence following RP. Furthermore, TABS was shown to provide added value to common predictors including Gleason sum and Kattan and Stephenson nomograms. PATIENT SUMMARY: Future studies may benefit from evaluation of benign regions proximal to the tumor on surgically excised prostate cancer tissue for assessing risk of disease recurrence.
Assuntos
Núcleo Celular/patologia , Recidiva Local de Neoplasia/patologia , Prostatectomia/métodos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Idoso , Biomarcadores Tumorais/análise , Diagnóstico por Computador/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores/métodos , Valor Preditivo dos Testes , Prognóstico , Antígeno Prostático Específico/análiseRESUMO
Histone modification including H3 lysine 79 methylation (H3K79me) plays a key role during gene transcription and DNA damage repair. DOT1L, the sole methyltransferase for three states of H3K79me, is implicated in leukemia, co-lorectal cancer, and dilated cardiomyopathy. However, understanding of DOT1L and H3K79me in these pathways and disease pathogenesis has been limited due to the difficulty of working with DOT1L protein. For instance, locus-specific or genome-wide binding sites of DOT1L revealed by chromatin immunoprecipitation (ChIP)-based methods are necessary for inferring its functions, but high-quality ChIP-grade antibodies are currently not available. Herein we have developed a knock-in approach to tag endogenous DOT1L with 3 × Flag at its C-terminal domain to follow functional analyses. The knock-in was facilitated by using TALENs to induce a targeted double-strand break at the endogenous DOTIL to stimulate local homologous recombination at that site. The single cell colonies with successful knock-in were isolated and verified by different methods. We also demonstrated that tagged DOT1L maintains its normal function in terms of methylation and that the engineered cells would be very useful for further studies.
RESUMO
BACKGROUND: DNA methylation patterns are initiated by de novo DNA methyltransferases DNMT3a/3b adding methyl groups to CG dinucleotides in the hypomethylated genome of early embryos. These patterns are faithfully maintained by DNMT1 during DNA replication to ensure epigenetic inheritance across generations. However, this two-step model is based on limited data. RESULTS: We generated base-resolution DNA methylomes for a series of DNMT knockout embryonic stem cells, with deep coverage at highly repetitive elements. We show that DNMT1 and DNMT3a/3b activities work complementarily and simultaneously to establish symmetric CG methylation and CHH (H = A, T or C) methylation. DNMT3a/3b can add methyl groups to daughter strands after each cycle of DNA replication. We also observe an unexpected division of labor between DNMT1 and DNMT3a/3b in suppressing retrotransposon long terminal repeats and long interspersed elements, respectively. Our data suggest that mammalian cells use a specific CG density threshold to predetermine methylation levels in wild-type cells and the magnitude of methylation reduction in DNMT knockout cells. Only genes with low CG density can be induced or, surprisingly, suppressed in the hypomethylated genome. Lastly, we do not find any association between gene body methylation and transcriptional activity. CONCLUSIONS: We show the concerted actions of DNMT enzymes in the establishment and maintenance of methylation patterns. The finding of distinct roles of DNMT1-dependent and -independent methylation patterns in genome stability and regulation of transcription provides new insights for understanding germ cell development, neuronal diversity, and transgenerational epigenetic inheritance and will help to develop next-generation DNMT inhibitors.
Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Animais , Composição de Bases , Células Cultivadas , DNA/química , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Elementos Nucleotídeos Longos e Dispersos , Camundongos , Camundongos Knockout , Proteínas/genética , Análise de Sequência de DNA , Sequências Repetidas Terminais , Transcrição Gênica , DNA Metiltransferase 3BRESUMO
BACKGROUND: Early prediction of disease progression in men with very low-risk (VLR) prostate cancer who selected active surveillance (AS) rather than immediate treatment could reduce morbidity associated with overtreatment. METHODS: We evaluated the association of six biomarkers [Periostin, (-5, -7) proPSA, CACNA1D, HER2/neu, EZH2, and Ki-67] with different Gleason scores and biochemical recurrence (BCR) on prostate cancer TMAs of 80 radical prostatectomy (RP) cases. Multiplex tissue immunoblotting (MTI) was used to assess these biomarkers in cancer and adjacent benign areas of 5 µm sections. Multivariate logistic regression (MLR) was applied to model our results. RESULTS: In the RP cases, CACNA1D, HER2/neu, and Periostin expression were significantly correlated with aggressive phenotype in cancer areas. An MLR model in the cancer area yielded a ROC-AUC = 0.98, whereas in cancer-adjacent benign areas, yielded a ROC-AUC = 0.94. CACNA1D and HER2/neu expression combined with Gleason score in a MLR model yielded a ROC-AUC = 0.79 for BCR prediction. In the small biopsies from an AS cohort of 61 VLR cases, an MLR model for prediction of progressors at diagnosis retained (-5, -7) proPSA and CACNA1D, yielding a ROC-AUC of 0.78, which was improved to 0.82 after adding tPSA into the model. CONCLUSIONS: The molecular profile of biomarkers is capable of accurately predicting aggressive prostate cancer on retrospective RP cases and identifying potential aggressive prostate cancer requiring immediate treatment on the AS diagnostic biopsy but limited in BCR prediction. IMPACT: Comprehensive profiling of biomarkers using MTI predicts prostate cancer aggressive phenotype in RP and AS biopsies.
Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Progressão da Doença , Humanos , Immunoblotting/métodos , Masculino , Pessoa de Meia-Idade , Fenótipo , Fatores de RiscoRESUMO
A role for dorsomedial hypothalamus (DMH) cholecystokinin (CCK) signaling in feeding control has been proposed. Administration of CCK into the DMH reduces food intake and OLETF rats lacking CCK1 receptors (CCK1R) become hyperphagic and obese. We hypothesized that site specific replenishment of CCK1R in the DMH of OLETF rats would attenuate aspects of their feeding deficits. Recombinant vectors of adeno-associated viral (AAV)-mediated expression of CCK1R (AAVCCK1R) were bilaterally delivered into the DMH of OLETF. OLETF rats with AAVCCK1R injections demonstrated a 65% replenishment of Cck1r mRNA expression in the DMH relative to lean LETO control rats. Although this level of replenishment did not significantly affect overall food intake or body weight through 14 weeks following viral injections, meal patterns were partially normalized in OLETF rats receiving AAVCCK1R with a significant decrease in dark cycle meal size and a small but significant decrease in daily food intake in the meal analysis chambers. Importantly, the elevation in blood glucose level of OLETF rats was attenuated by the AAVCCK1R injections (p=0.03), suggesting a role for DMH CCK signaling in glucose homeostasis. In support of this role, administration of CCK into the DMH of intact rats enhanced glucose tolerance, as this occurred through activation of CCK1R but not CCK2R signaling. In conclusion, partial replenishment of CCK1R in the DMH of OLETF rats, although insufficient for altering overall food intake and body weight, normalizes meal pattern changes and reduces blood glucose levels. Our study also shows a novel role of DMH CCK signaling in glucose homeostasis.
Assuntos
Colecistocinina/metabolismo , Núcleo Hipotalâmico Dorsomedial/metabolismo , Comportamento Alimentar/fisiologia , Glucose/metabolismo , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Glicemia/efeitos dos fármacos , Colecistocinina/genética , Colecistocinina/farmacologia , Núcleo Hipotalâmico Dorsomedial/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Teste de Tolerância a Glucose , Proteínas de Fluorescência Verde/genética , Masculino , Microinjeções , Atividade Motora/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos OLETF , Ratos Long-Evans , Receptores da Colecistocinina/genética , Receptores da Colecistocinina/metabolismo , Transdução de Sinais/genética , Transdução Genética/métodosRESUMO
The intake-excitatory effects of caloric foods are mainly due to the palatable taste and the ensuing positive postingestive effects. Dietary obese individuals are inclined to overeat high caloric foods. However, it is still unclear whether the taste or postingestive reinforcement mainly contributes to the excessive intake by obese individuals. In the present study, we measured 10- or 120-min sucrose solution drunk by dietary obese rats and measured c-Fos expression following 120-min tests in the central nucleus of amygdala (CeA), a forebrain nucleus involved in the hedonic reward and craving, and the parabrachial nucleus (PBN), a taste relay area responsive to positive postingestive effects. Dietary obese rats, compared with those fed normal chow, ingested larger amounts of sucrose solution (0.25 M) in the 120-min test, but not in the 10-min test. In addition, significantly more sucrose-induced c-Fos positive cells were found in the CeA, but much less in the external lateral subnucleus of the PBN of dietary obese rats. Our results demonstrate that increased sucrose intake in dietary obese rats is mainly due to the alteration of postingestive effects. The differences in these postingestive effects in obesity may involve greater positive/excitatory signals in which the CeA may play a role, and less negative/inhibitory signals in which the el-PBN may be involved.
Assuntos
Tonsila do Cerebelo/metabolismo , Ingestão de Alimentos , Obesidade/metabolismo , Ponte/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Sacarose/administração & dosagem , Animais , Biomarcadores/metabolismo , Gorduras na Dieta/administração & dosagem , Imuno-Histoquímica , Masculino , Obesidade/psicologia , Ratos , Ratos Sprague-DawleyRESUMO
Previous studies have shown that lesions of the posterodorsal amygdala (PDA) produce hyperphagia and obesity in female rats. To better understand the role of the PDA in the regulation of feeding behavior, the current study examined the effects of electrical stimulation of the PDA of female rats on food intake and identified neurons activated by PDA stimulation using Fos immunohistochemistry. Hormonal levels following stimulation of the PDA were also investigated. Electrical stimulation (100 muA, 0.2 ms, 20 Hz, 10 min) of the PDA remarkably decreased 1 h food intake of rats. Following PDA stimulation, the number of Fos-like immunoreactive neurons increased in the caudal and intermediate parts of the nucleus of the solitary tract (NST), the area postrema (AP), the external lateral subnucleus of the parabrachial nucleus (PBN), the arcuate nucleus of the hypothalamus (Arc), and the central amygdaloid nucleus (CeA). The level of circulating leptin was elevated significantly by PDA stimulation as well. Together with previous studies, the results suggest that the PDA may play an important role in the regulation of feeding behavior, at least partly by modulating the circulating leptin, and that the caudal and intermediate parts of the NST, AP, external lateral PBN, Arc, and CeA probably participate in this regulation.