Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Am J Otolaryngol ; 45(4): 104342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38703609

RESUMO

OBJECTIVE: To develop a multi-instance learning (MIL) based artificial intelligence (AI)-assisted diagnosis models by using laryngoscopic images to differentiate benign and malignant vocal fold leukoplakia (VFL). METHODS: The AI system was developed, trained and validated on 5362 images of 551 patients from three hospitals. Automated regions of interest (ROI) segmentation algorithm was utilized to construct image-level features. MIL was used to fusion image level results to patient level features, then the extracted features were modeled by seven machine learning algorithms. Finally, we evaluated the image level and patient level results. Additionally, 50 videos of VFL were prospectively gathered to assess the system's real-time diagnostic capabilities. A human-machine comparison database was also constructed to compare the diagnostic performance of otolaryngologists with and without AI assistance. RESULTS: In internal and external validation sets, the maximum area under the curve (AUC) for image level segmentation models was 0.775 (95 % CI 0.740-0.811) and 0.720 (95 % CI 0.684-0.756), respectively. Utilizing a MIL-based fusion strategy, the AUC at the patient level increased to 0.869 (95 % CI 0.798-0.940) and 0.851 (95 % CI 0.756-0.945). For real-time video diagnosis, the maximum AUC at the patient level reached 0.850 (95 % CI, 0.743-0.957). With AI assistance, the AUC improved from 0.720 (95 % CI 0.682-0.755) to 0.808 (95 % CI 0.775-0.839) for senior otolaryngologists and from 0.647 (95 % CI 0.608-0.686) to 0.807 (95 % CI 0.773-0.837) for junior otolaryngologists. CONCLUSIONS: The MIL based AI-assisted diagnosis system can significantly improve the diagnostic performance of otolaryngologists for VFL and help to make proper clinical decisions.


Assuntos
Inteligência Artificial , Laringoscopia , Leucoplasia , Prega Vocal , Humanos , Prega Vocal/diagnóstico por imagem , Prega Vocal/patologia , Laringoscopia/métodos , Masculino , Leucoplasia/diagnóstico , Leucoplasia/patologia , Feminino , Pessoa de Meia-Idade , Idoso , Diagnóstico por Computador/métodos , Aprendizado de Máquina , Diagnóstico Diferencial , Adulto , Algoritmos , Neoplasias Laríngeas/diagnóstico , Neoplasias Laríngeas/patologia , Neoplasias Laríngeas/diagnóstico por imagem
2.
Am J Otolaryngol ; 44(2): 103695, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36473265

RESUMO

OBJECTIVES: Video laryngoscopy is an important diagnostic tool for head and neck cancers. The artificial intelligence (AI) system has been shown to monitor blind spots during esophagogastroduodenoscopy. This study aimed to test the performance of AI-driven intelligent laryngoscopy monitoring assistant (ILMA) for landmark anatomical sites identification on laryngoscopic images and videos based on a convolutional neural network (CNN). MATERIALS AND METHODS: The laryngoscopic images taken from January to December 2018 were retrospectively collected, and ILMA was developed using the CNN model of Inception-ResNet-v2 + Squeeze-and-Excitation Networks (SENet). A total of 16,000 laryngoscopic images were used for training. These were assigned to 20 landmark anatomical sites covering six major head and neck regions. In addition, the performance of ILMA in identifying anatomical sites was validated using 4000 laryngoscopic images and 25 videos provided by five other tertiary hospitals. RESULTS: ILMA identified the 20 anatomical sites on the laryngoscopic images with a total accuracy of 97.60 %, and the average sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 100 %, 99.87 %, 97.65 %, and 99.87 %, respectively. In addition, multicenter clinical verification displayed that the accuracy of ILMA in identifying the 20 targeted anatomical sites in 25 laryngoscopic videos from five hospitals was ≥95 %. CONCLUSION: The proposed CNN-based ILMA model can rapidly and accurately identify the anatomical sites on laryngoscopic images. The model can reflect the coverage of anatomical regions of the head and neck by laryngoscopy, showing application potential in improving the quality of laryngoscopy.


Assuntos
Inteligência Artificial , Neoplasias de Cabeça e Pescoço , Humanos , Laringoscopia/métodos , Estudos Retrospectivos , Redes Neurais de Computação
3.
J Laryngol Otol ; 138(3): 331-337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37994484

RESUMO

OBJECTIVE: To propose a scoring system based on laryngoscopic characteristics for the differential diagnosis of benign and malignant vocal fold leukoplakia. METHODS: Laryngoscopic images from 200 vocal fold leukoplakia cases were retrospectively analysed. The laryngoscopic signs of benign and malignant vocal fold leukoplakia were compared, and statistically significant features were assigned and accumulated to establish the leukoplakia finding score. RESULTS: A total of five indicators associated with malignant vocal fold leukoplakia were included to construct the leukoplakia finding score, with a possible range of 0-10 points. A score of 6 points or more was indicative of a diagnosis of malignant vocal fold leukoplakia. The sensitivity, specificity and accuracy values of the leukoplakia finding score were 93.8 per cent, 83.6 per cent and 86.0 per cent, respectively. The consistency in the leukoplakia finding score obtained by different laryngologists was strong (kappa = 0.809). CONCLUSION: This scoring system based on laryngoscopic characteristics has high diagnostic value for distinguishing benign and malignant vocal fold leukoplakia.


Assuntos
Doenças da Laringe , Laringoscopia , Humanos , Prega Vocal/patologia , Estudos Retrospectivos , Doenças da Laringe/diagnóstico , Doenças da Laringe/patologia , Leucoplasia/diagnóstico , Leucoplasia/patologia
4.
Laryngoscope ; 134(1): 127-135, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37254946

RESUMO

OBJECTIVE: To construct and validate a deep convolutional neural network (DCNN)-based artificial intelligence (AI) system for the detection of nasopharyngeal carcinoma (NPC) using archived nasopharyngoscopic images. METHODS: We retrospectively collected 14107 nasopharyngoscopic images (7108 NPCs and 6999 noncancers) to construct a DCNN model and prepared a validation dataset containing 3501 images (1744 NPCs and 1757 noncancers) from a single center between January 2009 and December 2020. The DCNN model was established using the You Only Look Once (YOLOv5) architecture. Four otolaryngologists were asked to review the images of the validation set to benchmark the DCNN model performance. RESULTS: The DCNN model analyzed the 3501 images in 69.35 s. For the validation dataset, the precision, recall, accuracy, and F1 score of the DCNN model in the detection of NPCs on white light imaging (WLI) and narrow band imaging (NBI) were 0.845 ± 0.038, 0.942 ± 0.021, 0.920 ± 0.024, and 0.890 ± 0.045, and 0.895 ± 0.045, 0.941 ± 0.018, and 0.975 ± 0.013, 0.918 ± 0.036, respectively. The diagnostic outcome of the DCNN model on WLI and NBI images was significantly higher than that of two junior otolaryngologists (p < 0.05). CONCLUSION: The DCNN model showed better diagnostic outcomes for NPCs than those of junior otolaryngologists. Therefore, it could assist them in improving their diagnostic level and reducing missed diagnoses. LEVEL OF EVIDENCE: 3 Laryngoscope, 134:127-135, 2024.


Assuntos
Inteligência Artificial , Neoplasias Nasofaríngeas , Humanos , Endoscopia , Carcinoma Nasofaríngeo/diagnóstico , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/patologia , Redes Neurais de Computação , Estudos Retrospectivos
5.
Eur J Radiol Open ; 12: 100563, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38681663

RESUMO

Objectives: This study aims to assess the efficacy of narrow band imaging (NBI) endoscopy in utilizing radiomics for predicting radiosensitivity in nasopharyngeal carcinoma (NPC), and to explore the associated molecular mechanisms. Materials: The study included 57 NPC patients who were pathologically diagnosed and underwent RNA sequencing. They were categorized into complete response (CR) and partial response (PR) groups after receiving radical concurrent chemoradiotherapy. We analyzed 267 NBI images using ResNet50 for feature extraction, obtaining 2048 radiomic features per image. Using Python for deep learning and least absolute shrinkage and selection operator for feature selection, we identified differentially expressed genes associated with radiomic features. Subsequently, we conducted enrichment analysis on these genes and validated their roles in the tumor immune microenvironment through single-cell RNA sequencing. Results: After feature selection, 54 radiomic features were obtained. The machine learning algorithm constructed from these features showed that the random forest algorithm had the highest average accuracy rate of 0.909 and an area under the curve of 0.961. Correlation analysis identified 30 differential genes most closely associated with the radiomic features. Enrichment and immune infiltration analysis indicated that tumor-associated macrophages are closely related to treatment responses. Three key NBI differentially expressed immune genes (NBI-DEIGs), namely CCL8, SLC11A1, and PTGS2, were identified as regulators influencing treatment responses through macrophages. Conclusion: NBI-based radiomics models introduce a novel and effective method for predicting radiosensitivity in NPC. The molecular mechanisms may involve the functional states of macrophages, as reflected by key regulatory genes.

6.
Front Immunol ; 15: 1310376, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720887

RESUMO

Introduction: Hypopharyngeal squamous cell carcinoma (HSCC) is one of the malignant tumors with the worst prognosis in head and neck cancers. The transformation from normal tissue through low-grade and high-grade intraepithelial neoplasia to cancerous tissue in HSCC is typically viewed as a progressive pathological sequence typical of tumorigenesis. Nonetheless, the alterations in diverse cell clusters within the tissue microenvironment (TME) throughout tumorigenesis and their impact on the development of HSCC are yet to be fully understood. Methods: We employed single-cell RNA sequencing and TCR/BCR sequencing to sequence 60,854 cells from nine tissue samples representing different stages during the progression of HSCC. This allowed us to construct dynamic transcriptomic maps of cells in diverse TME across various disease stages, and experimentally validated the key molecules within it. Results: We delineated the heterogeneity among tumor cells, immune cells (including T cells, B cells, and myeloid cells), and stromal cells (such as fibroblasts and endothelial cells) during the tumorigenesis of HSCC. We uncovered the alterations in function and state of distinct cell clusters at different stages of tumor development and identified specific clusters closely associated with the tumorigenesis of HSCC. Consequently, we discovered molecules like MAGEA3 and MMP3, pivotal for the diagnosis and treatment of HSCC. Discussion: Our research sheds light on the dynamic alterations within the TME during the tumorigenesis of HSCC, which will help to understand its mechanism of canceration, identify early diagnostic markers, and discover new therapeutic targets.


Assuntos
Carcinogênese , Neoplasias Hipofaríngeas , Análise de Célula Única , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Masculino , Biomarcadores Tumorais/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hipofaríngeas/genética , Neoplasias Hipofaríngeas/patologia , Neoplasias Hipofaríngeas/imunologia , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Análise de Sequência de RNA , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Transcriptoma , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética
7.
Laryngoscope ; 134(10): 4321-4328, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38801129

RESUMO

OBJECTIVES: Vocal fold leukoplakia (VFL) is a precancerous lesion of laryngeal cancer, and its endoscopic diagnosis poses challenges. We aim to develop an artificial intelligence (AI) model using white light imaging (WLI) and narrow-band imaging (NBI) to distinguish benign from malignant VFL. METHODS: A total of 7057 images from 426 patients were used for model development and internal validation. Additionally, 1617 images from two other hospitals were used for model external validation. Modeling learning based on WLI and NBI modalities was conducted using deep learning combined with a multi-instance learning approach (MIL). Furthermore, 50 prospectively collected videos were used to evaluate real-time model performance. A human-machine comparison involving 100 patients and 12 laryngologists assessed the real-world effectiveness of the model. RESULTS: The model achieved the highest area under the receiver operating characteristic curve (AUC) values of 0.868 and 0.884 in the internal and external validation sets, respectively. AUC in the video validation set was 0.825 (95% CI: 0.704-0.946). In the human-machine comparison, AI significantly improved AUC and accuracy for all laryngologists (p < 0.05). With the assistance of AI, the diagnostic abilities and consistency of all laryngologists improved. CONCLUSIONS: Our multicenter study developed an effective AI model using MIL and fusion of WLI and NBI images for VFL diagnosis, particularly aiding junior laryngologists. However, further optimization and validation are necessary to fully assess its potential impact in clinical settings. LEVEL OF EVIDENCE: 3 Laryngoscope, 134:4321-4328, 2024.


Assuntos
Leucoplasia , Imagem de Banda Estreita , Prega Vocal , Humanos , Imagem de Banda Estreita/métodos , Masculino , Feminino , Prega Vocal/diagnóstico por imagem , Prega Vocal/patologia , Pessoa de Meia-Idade , Leucoplasia/diagnóstico por imagem , Leucoplasia/diagnóstico , Leucoplasia/patologia , Neoplasias Laríngeas/diagnóstico por imagem , Neoplasias Laríngeas/diagnóstico , Idoso , Laringoscopia/métodos , Curva ROC , Lesões Pré-Cancerosas/diagnóstico por imagem , Lesões Pré-Cancerosas/diagnóstico , Lesões Pré-Cancerosas/patologia , Inteligência Artificial , Aprendizado Profundo , Gravação em Vídeo , Adulto , Estudos Prospectivos , Diagnóstico Diferencial , Luz
8.
Zhonghua Zhong Liu Za Zhi ; 35(11): 867-70, 2013 Nov.
Artigo em Zh | MEDLINE | ID: mdl-24447488

RESUMO

OBJECTIVE: To investigate the clinical characteristics and prognostic factors of leptomeningeal metastases (LM) from solid tumors and to develop better treatment strategies. METHODS: The clinical characteristics and follow-up results of 77 cases of leptomeningeal metastases (LM) from solid tumors diagnosed and treated in our hospital from 2002 to 2011 were retrospectively analyzed. Clinical characteristics, treatment methods and overall survival were analyzed using Kaplan-Meier method and Cox regression model. RESULTS: The median survival time for all the patients was 88 days. KPS score, control of the primary tumor and systemic treatment were correlated with survival time for the patients (P < 0.05 for all). The median survival time of systemic treatment was 150 d and those without systemic treatment (chemotherapy and/or targeted therapy) after LM was 60 d (P = 0.001). Systemic therapy combined with local treatment (radiotherapy to the meninges or intrathecal chemotherapy) further improved the survival time of patients. Multivariate analysis showed that KPS and short-term therapeutic response for the LM were independent prognostic factors (P < 0.05 for both). CONCLUSIONS: KPS and short-term therapeutic response are independent prognostic factores for leptomeningeal metastases from solid tumors. Systemic chemotherapy or targeted therapy can prolong the survival time. Systemic treatment (chemotherapy and/or targeted therapy) combined with radiation therapy or intrathecal injection may further improve the clinical outcomes.


Assuntos
Neoplasias Pulmonares/patologia , Carcinomatose Meníngea/secundário , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/patologia , Terapia Combinada , Feminino , Seguimentos , Humanos , Masculino , Carcinomatose Meníngea/tratamento farmacológico , Carcinomatose Meníngea/radioterapia , Pessoa de Meia-Idade , Análise Multivariada , Aceleradores de Partículas , Prognóstico , Estudos Retrospectivos , Neoplasias Gástricas/patologia , Taxa de Sobrevida , Adulto Jovem
9.
Laryngoscope ; 132(5): 999-1007, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34622964

RESUMO

OBJECTIVES/HYPOTHESIS: To develop a deep-learning-based automatic diagnosis system for identifying nasopharyngeal carcinoma (NPC) from noncancer (inflammation and hyperplasia), using both white light imaging (WLI) and narrow-band imaging (NBI) nasopharyngoscopy images. STUDY DESIGN: Retrospective study. METHODS: A total of 4,783 nasopharyngoscopy images (2,898 WLI and 1,885 NBI) of 671 patients were collected and a novel deep convolutional neural network (DCNN) framework was developed named Siamese deep convolutional neural network (S-DCNN), which can simultaneously utilize WLI and NBI images to improve the classification performance. To verify the effectiveness of combining the above-mentioned two modal images for prediction, we compared the proposed S-DCNN with two baseline models, namely DCNN-1 (only considering WLI images) and DCNN-2 (only considering NBI images). RESULTS: In the threefold cross-validation, an overall accuracy and area under the curve of the three DCNNs achieved 94.9% (95% confidence interval [CI] 93.3%-96.5%) and 0.986 (95% CI 0.982-0.992), 87.0% (95% CI 84.2%-89.7%) and 0.930 (95% CI 0.906-0.961), and 92.8% (95% CI 90.4%-95.3%) and 0.971 (95% CI 0.953-0.992), respectively. The accuracy of S-DCNN is significantly improved compared with DCNN-1 (P-value <.001) and DCNN-2 (P-value = .008). CONCLUSION: Using the deep-learning technology to automatically diagnose NPC under nasopharyngoscopy can provide valuable reference for NPC screening. Superior performance can be obtained by simultaneously utilizing the multimodal features of NBI image and WLI image of the same patient. LEVEL OF EVIDENCE: 3 Laryngoscope, 132:999-1007, 2022.


Assuntos
Aprendizado Profundo , Neoplasias Nasofaríngeas , Endoscopia Gastrointestinal , Humanos , Imagem de Banda Estreita/métodos , Carcinoma Nasofaríngeo/diagnóstico por imagem , Neoplasias Nasofaríngeas/diagnóstico por imagem , Estudos Retrospectivos
10.
Acta Otolaryngol ; 141(8): 802-807, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34314296

RESUMO

BACKGROUND: The diagnosis of vocal cord leukoplakia mainly relies on laryngoscopy. The morphology of vocal cord leukoplakia under laryngoscope is closely related to the pathological nature of leukoplakia. The specific manifestations associated with high-risk vocal cord leukoplakia remain to be explored. OBJECTIVE: To investigate the characteristics of low-risk and high-risk vocal cord leukoplakia under conventional white light imaging (WLI) laryngoscopy and its correlations with narrow band imaging (NBI) laryngoscopy. METHODS: One hundred and seventy-five cases of vocal cord leukoplakia were divided into low-risk and high-risk groups. The characteristics of low-risk and high-risk vocal cord leukoplakia under WLI laryngoscopy and its correlations with NBI laryngoscopy were analyzed. RESULTS: Logistic regression analysis showed that thickness and hyperemia were independent factors (p < .05). Hyperemia had a strong consistency with the visualization of spots under NBI laryngoscopy (kappa = 0.758). The sign of hyperemia and the NBI classification had equivalent diagnostic efficacy for predicting the risk of cancerization of vocal cord leukoplakia. CONCLUSION: The sign of hyperemia under WLI laryngoscopy is significantly correlated with the visualized spots under NBI laryngoscopy. Hyperemia is an important feature for predicting malignant potential of vocal cord leukoplakia.


Assuntos
Hiperemia/complicações , Neoplasias Laríngeas/diagnóstico , Laringoscopia , Leucoplasia/patologia , Prega Vocal/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Transformação Celular Neoplásica , Diagnóstico Diferencial , Feminino , Humanos , Leucoplasia/complicações , Leucoplasia/diagnóstico , Masculino , Pessoa de Meia-Idade , Curva ROC , Risco
11.
Laryngoscope ; 129(2): 429-434, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30229933

RESUMO

OBJECTIVES: The purpose of this study was to introduce a new narrow band imaging (NBI) endoscopic classification for the diagnosis of vocal cord leukoplakia. STUDY DESIGN: Case series. METHODS: From January 2010 to February 2018, a total of 120 cases of vocal cord leukoplakia were enrolled in this study. The NBI endoscopic system was used to examine the vocal cords. Each lesion was observed by NBI endoscopy and evaluated according to the detailed morphologic findings of intraepithelial papillary capillary loop (IPCL). The superficial IPCL patterns were classified into six types (types I-VI). The differential diagnosis abilities of NBI classification for benign and malignant leukoplakia were investigated. RESULTS: Out of the 120 cases of vocal cord leukoplakia, 81% (97 of 120) related to benign lesions (including inflammation, epithelial proliferation, hyperkeratosis, dyskeratosis, mild dysplasia, and moderate dysplasia); the remaining 19% (23 of 120) consisted of malignant lesions (including severe dysplasia, carcinoma in situ, and invasive carcinoma). The accuracy of differential diagnosis for vocal cord leukoplakia using NBI endoscopy was up to 90.8% (109 of 120), significantly higher than that of white light imaging (70.0%, 84 of 120) (χ2 = 16.536, P = 0.000). The sensitivity, specificity, and positive and negative predictive values of the diagnosis for malignant vocal cord leukoplakia under the NBI endoscope were 82.6%, 92.8%, 73.1%, and 95.7%, respectively. There is relatively good consistency between the NBI endoscopic diagnosis and pathological diagnosis (kappa = 0.718, P = 0.000). CONCLUSION: The new NBI endoscopic classification of vocal cord leukoplakia can improve the accuracy of distinguishing benign and malignant leukoplakia. LEVEL OF EVIDENCE: 4 Laryngoscope, 129:429-434, 2019.


Assuntos
Endoscopia/estatística & dados numéricos , Doenças da Laringe/diagnóstico por imagem , Leucoplasia/diagnóstico por imagem , Imagem de Banda Estreita/estatística & dados numéricos , Prega Vocal/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Diagnóstico Diferencial , Endoscopia/métodos , Feminino , Humanos , Neoplasias Laríngeas/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Imagem de Banda Estreita/métodos , Valor Preditivo dos Testes , Sensibilidade e Especificidade
12.
Ai Zheng ; 24(4): 506-8, 2005 Apr.
Artigo em Zh | MEDLINE | ID: mdl-15820080

RESUMO

BACKGROUND & OBJECTIVE: Patients with advanced tumors usually suffer from cardiac dysfunction. Monitoring cardiac function is important for these patients. Serum creatine kinase of MB type (CK-MB) is a biochemical marker of cardiac damage. This study was to estimate relationship of serum level of CK-MB to cardiac function of patients with advanced tumors, and its prognostic value. METHODS: Serum CK-MB in 68 patients with advanced tumors was detected by immunoinhibition assay. Observation group was composed of 34 patients with elevated serum CK-MB. Control group was composed of 34 patients with normal serum CK-MB level. RESULTS: Incidence of cardiac insufficiency of grade III-IV was significantly higher in observation group than in control group (21 vs. 6, P < 0.05). Mortality of observation group was significantly higher than that of control group (25 vs. 8, P < 0.01). Elevation of serum CK-MB was frequently found in patients with primary liver cancer or liver metastasis (P < 0.05). CONCLUSIONS: Patients with elevated serum CK-MB often suffer from cardiac insufficiency, severe illness status, and have high mortality. Serum level of CK-MB may be a predictor of poor prognosis of patients with advanced tumors.


Assuntos
Creatina Quinase Forma MB/sangue , Coração/fisiopatologia , Neoplasias/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/sangue , Neoplasias da Mama/fisiopatologia , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/fisiopatologia , Feminino , Testes de Função Cardíaca , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/fisiopatologia , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/fisiopatologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias/fisiopatologia , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA