Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Small ; 19(4): e2205587, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36437112

RESUMO

Strain engineering of electrocatalysts provides an effective strategy to improve the intrinsic catalytic activity. Here, the defect-rich crystalline/amorphous Pd nanosheet aerogel with hybrid microstrain and lattice strain is synthesized by combining laser irradiation and phosphorus doping methods. The surface strain exhibited by the microstrain and lattice strain shifts the d-band center of the electrocatalyst, enhancing the adsorption of intermediates in the ethanol oxidation reaction and thus improving the catalytic performances. The measured mass activity, specific activity and C1-path selectivity of the Pd nanosheet aerogel are 4.48, 3.06, and 5.06 times higher than those of commercial Pd/C, respectively. These findings afford a new strategy for the preparation of highl activity and C1 pathway selective catalysts and provide insight into the catalytic mechanism of strain-rich heterojunction materials based on tunable surface strain values.

2.
Small ; 19(25): e2207752, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36929582

RESUMO

Over the past decade, stem cell- and tumor-derived organoids are the most promising models in developmental biology and disease modeling, respectively. The matrix is one of three main elements in the construction of an organoid and the most important module of its extracellular microenvironment. However, the source of the currently available commercial matrix, Matrigel, limits the application of organoids in clinical medicine. It is worth investigating whether the original decellularized extracellular matrix (dECM) can be exploited as the matrix of organoids and improving organoid construction are very important. In this review, tissue decellularization protocols and the characteristics of decellularization methods, the mechanical support and biological cues of extraccellular matrix (ECM), methods for construction of multifunctional dECM and responsive dECM hydrogel, and the potential applications of functional dECM are summarized. In addition, some expectations are provided for dECM as the matrix of organoids in clinical applications.


Assuntos
Matriz Extracelular Descelularizada , Matriz Extracelular , Engenharia Tecidual/métodos , Organoides , Bioengenharia , Alicerces Teciduais
3.
J Nanobiotechnology ; 21(1): 182, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37280622

RESUMO

Due to its complicated pathophysiology, propensity for metastasis, and poor prognosis, colon cancer is challenging to treat and must be managed with a combination of therapy. Using rolling circle transcription (RCT), this work created a nanosponge therapeutic medication system (AS1411@antimiR-21@Dox). Using the AS1411 aptamer, this approach accomplished targeted delivery to cancer cells. Furthermore, analysis of cell viability, cell apoptosis, cell cycle arrest, reactive oxygen species (ROS) content, and mitochondrial membrane potential (MMP) levels revealed that functional nucleic acid nanosponge drug (FND) can kill cancer cells. Moreover, transcriptomics uncovered a putative mechanism for the FND anti-tumor effect. These pathways, which included mitotic metaphase and anaphase as well as the SMAC-mediated dissociation of the IAP: caspase complexes, were principally linked to the cell cycle and cell death. In conclusion, by triggering cell cycle arrest and apoptosis, the nano-synergistic therapeutic system allowed for the intelligent and effective targeted administration of RNA and chemotherapeutic medicines for colon cancer treatment. The system allowed for payload efficiency while being customizable, targeted, reliable, stable, and affordable.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias do Colo , Nanopartículas , Ácidos Nucleicos , Humanos , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Ácidos Nucleicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Portadores de Fármacos/uso terapêutico , Aptâmeros de Nucleotídeos/uso terapêutico , Oligodesoxirribonucleotídeos , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral
4.
Ecotoxicol Environ Saf ; 263: 115279, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37480692

RESUMO

The growing presence of yttrium (Y) in the environment raises concern regarding its safety and toxicity. However, limited toxicological data are available to determine cardiotoxicity of Y and its underlying mechanisms. In the present study, yttrium chloride (YCl3) intervention with different doses was performed in male Kunming mice for the toxicological evaluation of Y in the heart. After 28 days of intragastric administration, 500 mg/kg·bw YCl3 induces iron accumulation in cardiomyocytes, and triggers ferroptosis through the glutathione peroxidase 4 (GPX4)/glutathione (GSH)/system Xc- axis via the inhibition of Nrf2 signaling pathway. This process led to cardiac lipid peroxidation and inflammatory response. Further RNA sequencing transcriptome analysis found that many genes involved in ferroptosis and lipid metabolism-related pathways were enriched. The ferroptosis induced by YCl3 in cardiomyocytes ultimately caused cardiac injury and dysfunction in mice. Our findings assist in the elucidation of the potential subacute cardiotoxicity of Y3+ and its underlying mechanisms.


Assuntos
Ferroptose , Miócitos Cardíacos , Masculino , Camundongos , Animais , Peroxidação de Lipídeos , Cardiotoxicidade , Ítrio , Inflamação , Ferro
5.
Nanotechnology ; 33(22)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35180711

RESUMO

Gold (Au) can be used as an ideal metal electrocatalyst for ethanol and glucose oxidation reactions due to its high performance-to-cost ratio. In this paper, the Au aerogel with high-index facets was synthesized by using the laser ablation in liquid technology, which can improve the electrocatalytic activity of Au. The as-prepared Au aerogel showed excellent mass activity and specific activity toward ethanol oxidation reaction, which are 4.6 times and 2.1 times higher than Au/C, respectively. The 3D porous nature and rich defect of the Au aerogel provide more active sites. In addition, the high-index facets with under-coordinated atoms enhance the adsorption of ethanol and glucose molecules, thus improving the intrinsic catalytic activity of Au aerogel. The effect of high-index facets has also been investigated by density functional theory calculations. Furthermore, the Au aerogels also show good electrocatalytic activity and stability toward glucose oxidation reaction. These results are conducive to promote the practical application of Au in electrocatalysis.

6.
Proc Natl Acad Sci U S A ; 115(20): 5099-5104, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712822

RESUMO

Ground and satellite observations show that air pollution regulations in the United States (US) have resulted in substantial reductions in emissions and corresponding improvements in air quality over the last several decades. However, large uncertainties remain in evaluating how recent regulations affect different emission sectors and pollutant trends. Here we show a significant slowdown in decreasing US emissions of nitrogen oxides (NO x ) and carbon monoxide (CO) for 2011-2015 using satellite and surface measurements. This observed slowdown in emission reductions is significantly different from the trend expected using US Environmental Protection Agency (EPA) bottom-up inventories and impedes compliance with local and federal agency air-quality goals. We find that the difference between observations and EPA's NO x emission estimates could be explained by: (i) growing relative contributions of industrial, area, and off-road sources, (ii) decreasing relative contributions of on-road gasoline, and (iii) slower than expected decreases in on-road diesel emissions.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monóxido de Carbono/análise , Monitoramento Ambiental/normas , Óxidos de Nitrogênio/análise , Material Particulado/análise , Emissões de Veículos/análise , Gasolina , Humanos , Estados Unidos
7.
Luminescence ; 36(8): 1901-1909, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34270167

RESUMO

The SiO2 @SiO2 :Tb(1,2-BDC)3 phen microspheres with monodispersed core-shell structure, are kind of fluorescent particles, which are prepared by a seeded growth method under the catalysis of glacial acetic acid (1,2-BDC, 1,2-benzenedicarboxylic acid; phen, 1,10-phenanthroline). Firstly, silica seed was fabricated by the hydrolysis of ethyl orthosilicate, and the Tb(1,2-BDC)3 phen was prepared by using 1,2-BDC and phen. Then, a thin mesoporous silica shell doped with Tb(1,2-BDC)3 phen was grown on the prepared monodisperse silica colloids. The prepared phosphor was analyzed by Fourier-transform infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, thermogravimetric and fluorescence spectroscopy. The experimental results showed that the diameter of the SiO2 @SiO2 :Tb((1,2-BDC)3 phen microsphere was about 200 nm with a typical core-shell structure, among which the diameter of the silica core was 180 nm, and that of the mesoporous silicon shell doped with terbium complex was about 10 nm. The fluorescence intensity of SiO2 @SiO2 :Tb((1,2-BDC)3 phen microsphere is nearly three times higher than that of Tb((1,2-BDC)3 phen complexes. The prepared microspheres could be widely used in bio-imaging, optoelectronic appliances and medical diagnosis.


Assuntos
Dióxido de Silício , Térbio , Microscopia Eletrônica de Transmissão , Microesferas , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34360621

RESUMO

Metabolic syndrome (MetS) is a set of complex, chronic inflammatory conditions that are characterized by central obesity and associated with an increased risk of cardiovascular diseases. In recent years, microRNAs (miRNAs) have become an important type of endocrine factors, which play crucial roles in maintaining energy balance and metabolic homeostasis. However, its unfavorable properties such as easy degradation in blood and off-target effect are still a barrier for clinical application. Nanosystem based delivery possess strong protection, high bioavailability and control release rate, which is beneficial for success of gene therapy. This review first describes the current progress and advances on miRNAs associated with MetS, then provides a summary of the therapeutic potential and targets of miRNAs in metabolic organs. Next, it discusses recent advances in the functionalized development of classic delivery systems (exosomes, liposomes and polymers), including their structures, properties, functions and applications. Furthermore, this work briefly discusses the intelligent strategies used in emerging novel delivery systems (selenium nanoparticles, DNA origami, microneedles and magnetosomes). Finally, challenges and future directions in this field are discussed provide a comprehensive overview of the future development of targeted miRNAs delivery for MetS treatment. With these contributions, it is expected to address and accelerate the development of effective NA delivery systems for the treatment of MetS.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Terapia Genética/métodos , Síndrome Metabólica/terapia , MicroRNAs/uso terapêutico , Nanoestruturas , Sistemas de Liberação de Medicamentos/tendências , Exossomos , Humanos , Lipossomos
9.
Angew Chem Int Ed Engl ; 60(13): 6890-6918, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-31729826

RESUMO

Functional nucleic acid (FNA) nanotechnology is an interdisciplinary field between nucleic acid biochemistry and nanotechnology that focuses on the study of interactions between FNAs and nanomaterials and explores the particular advantages and applications of FNA nanomaterials. With the goal of building the next-generation biomaterials that combine the advantages of FNAs and nanomaterials, the interactions between FNAs and nanomaterials as well as FNA self-assembly technologies have established themselves as hot research areas, where the target recognition, response, and self-assembly ability, combined with the plasmon properties, stability, stimuli-response, and delivery potential of various nanomaterials can give rise to a variety of novel fascinating applications. As research on the structural and functional group features of FNAs and nanomaterials rapidly develops, many laboratories have reported numerous methods to construct FNA nanomaterials. In this Review, we first introduce some widely used FNAs and nanomaterials along with their classification, structure, and application features. Then we discuss the most successful methods employing FNAs and nanomaterials as elements for creating advanced FNA nanomaterials. Finally, we review the extensive applications of FNA nanomaterials in bioimaging, biosensing, biomedicine, and other important fields, with their own advantages and drawbacks, and provide our perspective about the issues and developing trends in FNA nanotechnology.


Assuntos
Técnicas Biossensoriais , Nanoestruturas/química , Nanotecnologia , Ácidos Nucleicos/química
10.
Cell Biol Toxicol ; 36(6): 603-608, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32607778

RESUMO

Aflatoxin B1 (AFB1) is widely distributed in nature and is confirmed to be the most toxic of all the aflatoxins, whose predominant metabolism site is the liver. As a well-studied and vital mode of epigenetic modifications, aberrant methylation of the promoters in eukaryotic cells may cause the silence of essential genes, affecting their related transcriptional pathways and ultimately leading to the development of disease and cancers. This study investigated the mechanisms of AFB1-induced hepatotoxicity in S phase-arrested L02 cells using single-cell RNA-seq and single-cell reduced representation bisulfite sequencing (RRBS). AFB1 induced apoptosis and cell cycle S phase arrest, reduced mitochondrial membrane potential (ΔΨm), and increased reactive oxygen species (ROS) generation, as well as the DNA methylation level. Hepatotoxicity mechanism patterns induced by AFB1 in S phase-arrested L02 cells were revealed by combining single-cell RNA-seq with single-cell RRBS analysis, in which DNA methylation played a role via regulating the gonadotropin-releasing hormone receptor pathway, the Wnt signaling pathway, and the TGF-beta signaling pathway. Moreover, a novel strategy for precision toxicology exploration was obtained, including the selection of target cells, multi-group non-directional sequencing, and pathway analysis.


Assuntos
Aflatoxina B1/toxicidade , Metilação de DNA/efeitos dos fármacos , Perfilação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , RNA-Seq , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Análise de Célula Única , Transcriptoma/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular , Redes Reguladoras de Genes/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
11.
Anal Bioanal Chem ; 412(19): 4477-4482, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32488386

RESUMO

In this work, a duplex-specific nuclease (DSN)-resistant triplex-helix DNA nanoswitch was designed for assays of single-base differentiation of the let-7a family in lung cancer cells. Initially, although a 10-bp duplex stem in the nanoswitch was cleaved to pieces, a 10-bp triplex stem was resistant to DSN. Consequently, a triple-stranded DNA structure resistant to DSN was obtained. The pH-dependent formation of the triplex structure then produced the pH-related nanoswitch/miRNA hybrid, and the metastable nanoswitch generated an obvious signal increase at pH 6.8. Surprisingly, the pH condition at 6.8 for the best nanoswitch/miRNA hybrid is consistent with the optimal DSN catalysis, which paves the way for a first-rank DSN signal amplification (DSNSA) strategy for the single-base selective capacity of the homologous let-7a family with a limit of detection of 0.26 pM. The cyclic strategy based on the DSN-mediated triplex-helix DNA nanoswitch was verified in lung cancer cell samples and exhibited better discriminatory ability without user-unfriendly nucleotide modification or extra probe-mediated assistance, showing excellent potential for application in biomedical sensing and clinical diagnosis. Graphical abstract Based on the discovery that a triple-helix DNA nanoswitch is resistant to DSN and that the nanoswitch/miRNA hybridization was pH-related, pH at 6.8, which is suitable for the optimal nanoswitch/miRNA hybrid and DSN catalysis, reinforced the DSNSA strategy for the single-base selective capacity of the homologous let-7a family with a limit of detection of 0.26 pM.


Assuntos
DNA/química , Neoplasias Pulmonares/genética , MicroRNAs/análise , Células A549 , Técnicas Biossensoriais/métodos , Linhagem Celular , Humanos , Limite de Detecção , MicroRNAs/genética , Nanoestruturas/química , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico
12.
Ecotoxicol Environ Saf ; 198: 110596, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32353602

RESUMO

Aflatoxin B1 (AFB1) is a known carcinogen found in contaminated food and designated by the World Health Organization as a class I carcinogenic substance. AFB1 presents with carcinogenicity, teratogenicity, and mutagenicity, and the liver is the human organ most susceptible to AFB1. Zinc (Zn), which is one of the essential nutrient elements that could protect the cells from biological toxins, heavy metals, hydrogen peroxide, metal chelators and radiation, is assessed in this study for its potential to alleviate AFB1-induced cytotoxicity. Samples were divided into three groups, namely CK, AFB1, and AFB1+Zn. Protein expressions were analyzed by two-way electrophoresis combined with flight mass spectrometry, with 41 differentially expressed proteins identified in the results, mainly related to oxidative stress, cell apoptosis, DNA damage, and energy metabolism. Zn was found to regulate the expression of peroxidases (peroxiredoxin-1, peroxiredoxin-5, peroxiredoxin-6) to relieve AFB1-induced oxidative stress. Moreover, Zn could decrease the expression of pro-apoptotic genes (cleaved-caspase-3, caspase-9, and Bax) and increase the expression of anti-apoptotic genes (Bcl-2 and Bcl-xl) to alleviate the cell apoptosis induced by AFB1. In addition, AFB1 reduced intracellular ATP levels, whereas Zn supplementation boosted ATP levels and maintained homeostasis and a steady state of cellular energy metabolism by modulating AMPK-ACC phosphorylation levels, while many zinc finger proteins changed after AFB1 treatment. These results, therefore, indicate that Zn could alleviate AFB1-induced cytotoxicity by changing the expressions of zinc finger proteins in liver hepatocellular carcinoma (HepG2 cells).


Assuntos
Aflatoxina B1/toxicidade , Apoptose/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Zinco/farmacologia , Caspase 3/genética , Caspase 9/genética , Dano ao DNA/efeitos dos fármacos , Células Hep G2 , Humanos , Substâncias Protetoras/farmacologia , Proteômica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2/genética
13.
Med Sci Monit ; 25: 6836-6845, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31509521

RESUMO

BACKGROUND Ginkgo biloba extract (EGb761), a standard extract of the Chinese traditional medicine Ginkgo biloba, plays an anti-tumor role in various cancers. However, whether EGb761 is involved in the invasion and metastasis of gastric cancer remains unclear. MATERIAL AND METHODS In the current study, cell viability assay, Western blotting, wound-healing assay, Transwell invasion assay, and orthotopic transplantation model were performed to explore the effects of EGb761 on gastric cancer. RESULTS In vitro, the results showed that EGb761 suppressed the proliferation of gastric cancer cells in a dose-dependent manner. Furthermore, the migration and invasiveness were weakened and the protein levels of p-ERK1/2, NF-kappaB P65, NF-kappaB p-P65, and MMP2 were decreased by EGb761 or U0126 (an inhibitor of ERK signaling pathway) exposure in gastric cancer cells. Moreover, the combined treatment with EGb761 and U0126 significantly inhibited ERK, NF-kappaB signaling pathway, and the expression of MMP2 than those of single drug. In vivo, EGb761 inhibited the tumor growth and hepatic metastasis of gastric cancer in the mouse model. Results of immunohistochemistry indicated that the expression of ERK1/2, NF-kappaB P65 and MMP2 were decreased by EGb761 in the tumor tissues. CONCLUSIONS EGb761 plays a vital role in the suppression of metastasis and ERK/NF-kappaB signaling pathway in gastric cancer.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/uso terapêutico , Transdução de Sinais , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Animais , Butadienos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ginkgo biloba , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
14.
J Nanosci Nanotechnol ; 19(1): 148-155, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30327015

RESUMO

Two plasma electrolytic oxidation (PEO) coatings were fabricated on LD7 aluminum alloy in oxalate and dihydrogen phosphate electrolytes. The phase composition, morphology and corrosion resistant of the two PEO coatings were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical test. Both PEO coatings presented three-layer structure, i.e., a porous outer layer, a relative dense intermediate layer with nano-size micro-pores and an inner nanoscale barrier layer at the coating/substrate interface. It was found that the porosity of the coating in oxalate electrolyte was lower than that in dihydrogen phosphate electrolyte. The small quantity of the nanosize micro-pores might be attributed to the appearance of "soft spark" in oxalate electrolyte, whereas the large number of micro-pores and cracks should be related to intensive micro-discharges in dihydrogen phosphate electrolyte during PEO process. The compact coating with nano-size micropores in oxalate electrolyte provided better protection than that in dihydrogen phosphate electrolyte from corrosion.

15.
Arch Toxicol ; 91(7): 2539-2549, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28451740

RESUMO

In this review, we introduce a new concept, precision toxicology: the mode of action of chemical- or drug-induced toxicity can be sensitively and specifically investigated by isolating a small group of cells or even a single cell with typical phenotype of interest followed by a single cell sequencing-based analysis. Precision toxicology can contribute to the better detection of subtle intracellular changes in response to exogenous substrates, and thus help researchers find solutions to control or relieve the toxicological effects that are serious threats to human health. We give examples for single cell isolation and recommend laser capture microdissection for in vivo studies and flow cytometric sorting for in vitro studies. In addition, we introduce the procedures for single cell sequencing and describe the expected application of these techniques to toxicological evaluations and mechanism exploration, which we believe will become a trend in toxicology.


Assuntos
Análise de Sequência/métodos , Análise de Célula Única/métodos , Toxicologia/métodos , Animais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Citometria de Fluxo/métodos , Humanos , Dispositivos Lab-On-A-Chip , Microdissecção e Captura a Laser/métodos , Medicina de Precisão/métodos , Toxicologia/instrumentação
17.
Zhonghua Yi Xue Za Zhi ; 95(17): 1328-30, 2015 May 05.
Artigo em Zh | MEDLINE | ID: mdl-26081664

RESUMO

OBJECTIVE: To explore the restrictive use of episiotomy for low forceps delivery. METHODS: A total of 311 low forceps delivery women at ≥37 weeks of gestation with live singleton cephalic pregnancies were recruited from June 2013 to December 2013 at our hospital. Among whom, 117 women underwent no episiotomy another 194 had mediolateral episiotomy. The maternal and neonatal outcomes of two types of episiotomy were compared. RESULTS: The amount of intra and post-partum hemorrhage, I-II perineal tearing, time of perineal suturing, perineal pain severity of post-partum 24 h significantly decreased than control group (P<0.05). No statistical significant inter-group differences existed in perineal hematoma, postnatal infection, urinary retention or length of stay after childbirth (P>0.05). And no statistically significant inter-group differences existed in incidence rates of neonatal asphyxia, neonatal birth trauma and newborns into neonatal intensive care unit (NICU) (P>0.05). CONCLUSION: During low forceps delivery, restrictive use of episiotomy may decrease the rate of episiotomy, reduce the amount of hemorrhage, minimize maternal injury, relieve pain and have no adverse effects on neonatal morbidities. And it improves the quality of vaginal delivery and demonstrate the concept of mini-invasiveness so that it is worthy of wider promotions.


Assuntos
Episiotomia , Extração Obstétrica , Feminino , Humanos , Recém-Nascido , Períneo , Gravidez , Instrumentos Cirúrgicos
18.
Toxicol Appl Pharmacol ; 280(3): 543-9, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25218026

RESUMO

Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 µg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected in the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Clusterina/metabolismo , Neoplasias Renais/induzido quimicamente , Ocratoxinas/metabolismo , Estresse Oxidativo/fisiologia , Animais , Moléculas de Adesão Celular/genética , Clusterina/sangue , Ensaio Cometa , Glutationa/análise , Neoplasias Renais/metabolismo , Masculino , Malondialdeído/análise , Ocratoxinas/administração & dosagem , Ocratoxinas/toxicidade , RNA/química , RNA/genética , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio/análise , Reação em Cadeia da Polimerase em Tempo Real , Superóxido Dismutase/análise
19.
Materials (Basel) ; 17(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38673231

RESUMO

The preparation of electrocatalysts with high performance for the ethanol oxidation reaction is vital for the large-scale commercialization of direct ethanol fuel cells. Here, we successfully synthesized a high-performance electrocatalyst of a AuPd alloy with a decreased alloying degree via pulsed laser irradiation in liquids. As indicated by the experimental results, the photochemical effect-induced surficial deposition of Pd atoms, combined with the photothermal effect-induced interdiffusion of Au and Pd atoms, resulted in the formation of AuPd alloys with a decreased alloying degree. Structural characterization reveals that L-AuPd exhibits a lower degree of alloying compared to C-AuPd prepared via the conventional co-reduction method. This distinct structure endows L-AuPd with outstanding catalytic activity and stability in EOR, achieving mass and specific activities as high as 16.01 A mgPd-1 and 20.69 mA cm-2, 9.1 and 5.2 times than that of the commercial Pd/C respectively. Furthermore, L-AuPd retains 90.1% of its initial mass activity after 300 cycles. This work offers guidance for laser-assisted fabrication of efficient Pd-based catalysts in EOR.

20.
Sci Data ; 11(1): 344, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582756

RESUMO

The research of plant seeds has always been a focus of agricultural and forestry research, and seed identification is an indispensable part of it. With the continuous application of artificial intelligence technology in the field of agriculture, seed identification through computer vision can effectively promote the development of agricultural and forestry wisdom. Data is the foundation of computer vision, but there is a lack of suitable datasets in the agricultural field. In this paper, a seed dataset named LZUPSD is established. A device based on mobile phones and macro lenses was established to acquire images. The dataset contains 4496 images of 88 different seeds. This dataset can not only be used as data for training deep learning models in the computer field, but also provide important data support for agricultural and forestry research. As an important resource in this field, this dataset plays a positive role in modernizing agriculture and forestry.


Assuntos
Inteligência Artificial , Sementes , Agricultura , Agricultura Florestal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA