Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2308456, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342675

RESUMO

In order to avoid the time-consuming and laborious identification of tumor-specific antigens (TSAs) during the traditional vaccine fabrication process, a versatile photodynamic therapy (PDT)-based method is developed to construct a whole-tumor antigen tumor vaccine (TV) from surgically resected tumor tissues for personalized immunotherapy. Mucoadhesive nanoparticles containing small-molecular photosensitizer are fabricated and directly co-incubated with suspended tumor cells obtained after cytoreduction surgery. After irradiation with a 405 nm laser, potent immunogenic cell death of cancer cells could be induced. Along with the release of TSAs, the as-prepared TV could activate safe and robust tumor-specific immune responses, leading to efficient suppression of postsurgery tumor recurrence and metastasis. The as-prepared TV cannot only be applied alone through various administration routes but also synergize with immunoadjuvant, chemotherapeutics, and immune checkpoint blockers to exert more potent immune responses. This work provides an alternative way to promote the clinical translation of PDT, which is generally restricted by the limited penetration of light. Moreover, the versatile strategy of vaccine fabrication also facilitates the clinical application of personalized whole-cell tumor vaccines.

2.
Int J Biol Macromol ; 206: 355-362, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35245570

RESUMO

Colored paper is an important industrial paper grade that has applications in various industrial sectors. The increase in coloring efficiency is a key in decreasing the use of dyes, thus can be considered as a "green" process concept; the coloring efficiency depends on the dye retention and dispersion. This work explores the use of nanocellulose, specifically, TEMPO-oxidized cellulose nanofibers (TOCNF), on the coloring efficiency of the preparation of colored paper. Two dyes (i.e. direct blue GL and reactive red 195 (RR195)) were used. Thanks to the large specific surface area and abundant active sites of TOCNF, its use largely improves the direct blue GL retention during the process. The coloring difference (∆E*ab) reached 5.334 with the addition of 13.6 wt% TOCNF and 1.8 wt% direct blue GL in the pulp furnish. The functional group in the dye is a vital factor in determining the dye retention when one chooses TOCNF to enhance the coloring efficiency in the production of colored paper. Furthermore, TOCNF significantly improved the strength properties of both direct blue GL and RR 195 dyed papers. This work demonstrates the potential of nanocellulose in the production of colored paper in improving the coloring efficiency, thus decreasing the environmental impact of the manufacturing process.


Assuntos
Celulose Oxidada , Nanofibras , Celulose/química , Celulose Oxidada/química , Corantes , Nanofibras/química
3.
Biomaterials ; 280: 121305, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890970

RESUMO

Metastasis has been widely recognized as the most lethal threats for cancer patients. Due to their special genetic and environmental context, cancer stem cells (CSCs) which are resistant to most cytotoxic drugs and radiation, are considered as the dominant culprit for metastasis. Thus, the efficient targeting and thorough elimination of CSCs are significantly urgent for the enhancement of therapeutic efficacy. Herein, we developed a facile and smart photothermal-chemo therapeutic nano-assembly system, of which the surface was modified by a sheddable PEG shell and acid-activatable pro-penetration peptide, to surmount the physiological barriers in targeting CSCs. A highly-efficient diradical-featured croconium-based photothermal agent and a natural cytotoxic heat shock protein (HSP) inhibitor were co-loaded in redox-sensitive chitosan matrices to realize the synergistic photothermal-chemo therapy. Within solid tumors, the PEG shell that prevents the nano-assembly from mononuclear phagocytic clearance could rapidly leave to expose the positively charged chitosan, and the detached iRGD could further actuate the tumor penetration of chitosan nanoparticles, and allow the CSCs targeting by selective recognition of CD44 protein. Owing to the HSP inhibition and chemo-sensitization, both the CSCs and non-CSCs could be thoroughly eliminated by the designed nano-assembly, largely inhibiting the tumor growth and metastasis. This work provides a potential strategy for CSCs-targeting drug delivery to solve the CSCs-related metastasis.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Nanopartículas/uso terapêutico , Células-Tronco Neoplásicas , Fototerapia
4.
ACS Nano ; 15(1): 781-796, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33410660

RESUMO

Chemotherapy is one of the most commonly used clinical antitumor strategies. However, the therapy-induced proliferative burst, which always accompanies drug resistance and metastasis, has become a major obstacle during treatment. Except for some endogenous cellular or genetic mechanisms and some microenvironmental selection pressures, the intercellular connections in the tumor microenvironment (TME) are also thought to be the driving force for the acquired drug resistance and proliferative burst. Even though some pathway inhibitors or cell exempting strategies could be applied to partially avoid these unwanted communications, the complexity of the TME and the limited knowledge about those unknown detrimental connections might greatly compromise the efforts. Therefore, a more broad-spectrum strategy is urgently needed to relieve the drug-induced burst proliferation during various treatments. In this article, based on the possible discrepancies in metabolic activity between cells with different growth rates, several ester-bond-based prodrugs were synthesized. After screening, 7-ethyl-10-hyodroxycamptothecin-based prodrug nanoparticles were found to efficiently overcome the paclitaxel resistance, to selectively act on the malignantly proliferated drug-resistant cells and, furthermore, to greatly diminish the proliferative effect of common cytotoxic agents by blocking the detrimental intercellular connections. With the discriminating ability against malignant proliferating cells, the as-prepared prodrug nanomedicine exhibited significant anticancer efficacy against both drug-sensitive and drug-resistant tumor models, either by itself or by combining with highly potent nonselective chemotherapeutics. This work provides a different perspective and a possible solution for the treatment of therapy-induced burst proliferation.


Assuntos
Antineoplásicos , Nanopartículas , Pró-Fármacos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Nanomedicina , Paclitaxel , Pró-Fármacos/farmacologia
5.
J Control Release ; 326: 25-37, 2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531414

RESUMO

Cisplatin is widely used in the chemoradiotherapy (CRT) of cervical cancers. However, despite the severe systemic side effects, the therapeutic efficacy of cisplatin is often compromised by the development of drug resistance, which is closely related to the elevated intracellular thiol-containing species (especially glutathione (GSH)) and the adenosine triphosphate (ATP)-dependent glutathione S-conjugate pumps. The construction of a safe and redox-sensitive nano-sensitizer with high disulfide density and high Pt(IV) prodrug loading capacity (up to 16.50% Pt and even higher), as described herein, is a promising way to overcome the cisplatin resistance and enhance the CRT efficacy. The optimized nanoparticles (NPs) (referred to as SSCV5) with moderate Pt loading (7.62% Pt) and median size (c.a. 40 nm) was screened out and used for further biological evaluation. Compared with free cisplatin, more drugs could be transported and released inside the cisplatin resistant cells (Hela-CDDP) by SSCV5 NPs. With the synergistic effect of GSH scavenging and mitochondrial damage, SSCV5 NPs can easily reverse the cisplatin resistance. Moreover, the higher nucleus DNA binding Pt content of SSCV5 NPs not only caused the DNA damage and apoptosis of Hela-CDDP cells but also sensitized these cells to X-Ray radiation. The in vivo safety and efficacy results showed that SSCV5 NPs effectively accumulated inside tumor and inhibited the growth of cisplatin resistant xenograft models while alleviating the serious side effect associated with cisplatin (the maximum tolerated cisplatin equivalent of single injection is higher than 20 mg/kg body weight). The intervention of exogenous radiation further improved the anticancer efficacy of SSCV5 NPs and caused the shrinkage of tumor volume, thus making this safe and facile nano-sensitizer a promising route for the neoadjuvant CRT of cervical cancers.


Assuntos
Antineoplásicos , Nanopartículas , Pró-Fármacos , Neoplasias do Colo do Útero , Linhagem Celular Tumoral , Quimiorradioterapia , Cisplatino , Feminino , Humanos , Platina , Neoplasias do Colo do Útero/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA