Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Rev ; 76(5): 846-895, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38866561

RESUMO

Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well known modification intricately associated with the pathogenesis of CMDs. This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies, including multiomics, intestinal microflora analysis, organoid, and single-cell sequencing techniques, are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assess the current literature to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. SIGNIFICANCE STATEMENT: This comprehensive review covers recent developments in H2S biology and pharmacology in cardiometabolic diseases CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.


Assuntos
Doenças Cardiovasculares , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/metabolismo , Humanos , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Gasotransmissores/metabolismo
2.
Cardiovasc Diabetol ; 23(1): 138, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664801

RESUMO

BACKGROUND: Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS: The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS: Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS: NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.


Assuntos
Caveolina 1 , Dieta Hiperlipídica , Células Endoteliais , Endotélio Vascular , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III , Vasodilatação , Animais , Masculino , Camundongos , Aorta/enzimologia , Aorta/fisiopatologia , Aorta/metabolismo , Aorta/efeitos dos fármacos , Aorta/patologia , Caveolina 1/metabolismo , Caveolina 1/deficiência , Caveolina 1/genética , Células Cultivadas , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/fisiopatologia , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Endotélio Vascular/metabolismo , Endotélio Vascular/enzimologia , Endotélio Vascular/efeitos dos fármacos , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/enzimologia , Obesidade/fisiopatologia , Obesidade/metabolismo , Transdução de Sinais , Esterol Esterase/metabolismo , Esterol Esterase/genética , Ubiquitinação , Vasodilatação/efeitos dos fármacos
3.
Cell Commun Signal ; 22(1): 488, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39394127

RESUMO

Vascular calcification (VC) arises from the accumulation of calcium salts in the intimal or tunica media layer of the aorta, contributing to higher risk of cardiovascular events and mortality. Despite this, the mechanisms driving VC remain incompletely understood. We previously described that nesfatin-1 functioned as a switch for vascular smooth muscle cells (VSMCs) plasticity in hypertension and neointimal hyperplasia. In this study, we sought to investigate the role and mechanism of nesfatin-1 in VC. The expression of nesfatin-1 was measured in calcified VSMCs and aortas, as well as in patients. Loss- and gain-of-function experiments were evaluated the roles of nesfatin-1 in VC pathogenesis. The transcription activation of nesfatin-1 was detected using a mass spectrometry. We found higher levels of nesfatin-1 in both calcified VSMCs and aortas, as well as in patients with coronary calcification. Loss-of-function and gain-of-function experiments revealed that nesfatin-1 was a key regulator of VC by facilitating the osteogenic transformation of VSMCs. Mechanistically, nesfatin-1 promoted the de-ubiquitination and stability of BMP-2 via inhibiting the E3 ligase SYTL4, and the interaction of nesfatin-1 with BMP-2 potentiated BMP-2 signaling and induced phosphorylation of Smad, followed by HDAC4 phosphorylation and nuclear exclusion. The dissociation of HDAC4 from RUNX2 elicited RUNX2 acetylation and subsequent nuclear translocation, leading to the transcription upregulation of OPN, a critical player in VC. From a small library of natural compounds, we identified that Curculigoside and Chebulagic acid reduced VC development via binding to and inhibiting nesfatin-1. Eventually, we designed a mass spectrometry-based DNA-protein interaction screening to identify that STAT3 mediated the transcription activation of nesfatin-1 in the context of VC. Overall, our study demonstrates that nesfatin-1 enhances BMP-2 signaling by inhibiting the E3 ligase SYTL4, thereby stabilizing BMP-2 and facilitating the downstream phosphorylation of SMAD1/5/9 and HDAC4. This signaling cascade leads to RUNX2 activation and the transcriptional upregulation of MSX2, driving VC. These insights position nesfatin-1 as a potential therapeutic target for preventing or treating VC, advancing our understanding of the molecular mechanisms underlying this critical cardiovascular condition.


Assuntos
Proteína Morfogenética Óssea 2 , Músculo Liso Vascular , Nucleobindinas , Osteogênese , Transdução de Sinais , Calcificação Vascular , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Nucleobindinas/metabolismo , Nucleobindinas/genética , Humanos , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Calcificação Vascular/genética , Proteína Morfogenética Óssea 2/metabolismo , Animais , Masculino , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Miócitos de Músculo Liso/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Aorta/metabolismo , Aorta/patologia
4.
Bioorg Chem ; 107: 104528, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33357982

RESUMO

A photosensitizer with high phototoxicity, suitable amphipathy and low dark toxicity could play a pivotal role in photodynamic therapy (PDT). In this study, a facile and versatile approach was adopted to synthesize a series of novel fluorinated hematoporphyrin ether derivatives (I1-I5 and II1-II4), and the photodynamic activities of these compounds were studied. Compared to hematoporphyrin monomethyl ether (HMME), all PSs showed preferable photodynamic activity against A549 lung tumor cells. The longest visible absorption wavelength of these compounds was approximately 622 nm. Among them, II3 revealed the highest singlet oxygen yield (0.0957 min-1), the strongest phototoxicity (IC50 = 1.24 µM), the lowest dark toxicity in vitro, and exhibited excellent anti-tumor effects in vivo. So compound II3 could act as new drug candidate for photodynamic therapy.


Assuntos
Antineoplásicos/uso terapêutico , Éteres/uso terapêutico , Hematoporfirinas/uso terapêutico , Hidrocarbonetos Fluorados/uso terapêutico , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Células A549 , Animais , Antineoplásicos/síntese química , Antineoplásicos/efeitos da radiação , Teoria da Densidade Funcional , Éteres/síntese química , Éteres/efeitos da radiação , Feminino , Hematoporfirinas/síntese química , Hematoporfirinas/efeitos da radiação , Humanos , Hidrocarbonetos Fluorados/síntese química , Hidrocarbonetos Fluorados/efeitos da radiação , Luz , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Químicos , Neoplasias/patologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/efeitos da radiação , Oxigênio Singlete/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Eur J Pharmacol ; 976: 176696, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38821160

RESUMO

Cichoric acid (CA), a widely utilized polyphenolic compound in medicine, has garnered significant attention due to its potential health benefits. Sepsis-induced acute kidney disease (AKI) is related with an elevated risk of end-stage kidney disease (ESKD). However, it remains unclear whether CA provides protection against septic AKI. The aim of this study is to investigated the protective effect and possible mechanisms of CA against LPS-induced septic AKI. Sepsis-induced AKI was induced in mice through intraperitoneal injection of lipopolysaccharide (LPS), and RAW264.7 macrophages were incubated with LPS. LPS exposure significantly increased the levels of M1 macrophage biomarkers while reducing the levels of M2 macrophage indicators. This was accompanied by the release of inflammatory factors, superoxide anion production, mitochondrial dysfunction, activation of succinate dehydrogenase (SDH), and subsequent succinate formation. Conversely, pretreatment with CA mitigated these abnormalities. CA attenuated hypoxia-inducible factor-1α (HIF-1α)-induced glycolysis by lifting the NAD+/NADH ratio in macrophages. Additionally, CA disrupted the K (lysine) acetyltransferase 2A (KAT2A)/α-tubulin complex, thereby reducing α-tubulin acetylation and subsequently inactivating the NLRP3 inflammasome. Importantly, administration of CA ameliorated LPS-induced renal pathological damage, apoptosis, inflammation, oxidative stress, and disturbances in mitochondrial function in mice. Overall, CA restrained HIF-1α-mediated glycolysis via inactivation of SDH, leading to NLRP3 inflammasome inactivation and the amelioration of sepsis-induced AKI.


Assuntos
Injúria Renal Aguda , Ácidos Cafeicos , Lipopolissacarídeos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sepse , Succinatos , Animais , Sepse/complicações , Sepse/tratamento farmacológico , Camundongos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Masculino , Succinatos/farmacologia , Succinatos/uso terapêutico , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células RAW 264.7 , Estresse Oxidativo/efeitos dos fármacos , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Glicólise/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ativação de Macrófagos/efeitos dos fármacos
6.
Int Immunopharmacol ; 143(Pt 1): 113334, 2024 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-39383784

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) is a complex pathological process that results from the restoration of blood flow to ischemic myocardium, leading to a series of detrimental effects including oxidative stress and inflammation. Stachyose, a naturally occurring oligosaccharide found in traditional Chinese medicinal herbs, has been suggested to possess therapeutic properties against various pathological conditions. However, its impact on MIRI and the underlying mechanisms have not been fully elucidated. In this study, we aimed to investigate the therapeutic effects of stachyose on MIRI and to uncover the molecular mechanisms involved. Using both in vivo and in vitro models of MIRI, we evaluated the effects of stachyose on cardiac function and cell death pathways. Our results indicate that stachyose significantly improves cardiac function and reduces infarct size in MIRI mice. Mechanistically, stachyose modulates the ferroptotic pathway in cardiomyocytes by upregulating the expression of glutathione peroxidase 4 (GPX4) and reducing lipid peroxides and iron levels. Additionally, stachyose inhibits the pyroptotic pathway in macrophages by downregulating the expression of NLRP3, gasdermin D (GSMD-N), and cleaved-caspase-1, leading to decreased levels of proinflammatory cytokines interleukin (IL)-1ß and IL-18. This study demonstrates that stachyose exerts a protective effect against MIRI by targeting both ferroptosis and pyroptosis pathways, suggesting its potential as a novel therapeutic agent for the treatment of MIRI. Further research is warranted to explore the detailed mechanisms and therapeutic potential of stachyose in clinical settings.


Assuntos
Ferroptose , Macrófagos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Piroptose , Animais , Ferroptose/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Masculino , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Oligossacarídeos/farmacologia , Oligossacarídeos/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Modelos Animais de Doenças , Células RAW 264.7 , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Gasderminas
7.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39204119

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a metabolic syndrome characterized by chronic inflammation, insulin resistance, and islet cell damage. The prevention of T2DM and its associated complications is an urgent public health issue that affects hundreds of millions of people globally. Numerous studies suggest that disturbances in gut metabolites are important driving forces for the pathogenesis of diabetes. However, the functions and mechanisms of action of most commensal bacteria in T2DM remain largely unknown. METHODS: The quantification of bile acids (BAs) in fecal samples was performed using ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS). The anti-diabetic effects of Bacteroides uniformis (B. uniformis) and its metabolites cholic acid (CA) and chenodeoxycholic acid (CDCA) were assessed in T2DM mice induced by streptozocin (STZ) plus high-fat diet (HFD). RESULTS: We found that the abundance of B. uniformis in the feces and the contents of CA and CDCA were significantly downregulated in T2DM mice. B. uniformis was diminished in diabetic individuals and this bacterium was sufficient to promote the production of BAs. Colonization of B. uniformis and intragastric gavage of CA and CDCA effectively improved the disorder of glucose and lipid metabolism in T2DM mice by inhibiting gluconeogenesis and lipolysis in the liver. CA and CDCA improved hepatic glucose and lipid metabolism by acting on the Takeda G protein-coupled receptor 5 (TGR5)/adenosine monophosphate-activated protein kinase (AMPK) signaling pathway since knockdown of TGR5 minimized the benefit of CA and CDCA. Furthermore, we screened a natural product-vaccarin (VAC)-that exhibited anti-diabetic effects by promoting the growth of B. uniformis in vitro and in vivo. Gut microbiota pre-depletion abolished the favorable effects of VAC in diabetic mice. CONCLUSIONS: These data suggest that supplementation of B. uniformis may be a promising avenue to ameliorate T2DM by linking the gut and liver.

8.
Phytomedicine ; 131: 155771, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851101

RESUMO

BACKGROUND: Sepsis often leads to significant morbidity and mortality due to severe myocardial injury. As is known, the activation of NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome crucially contributes to septic cardiomyopathy (SCM) by facilitating the secretion of interleukin (IL)-1ß and IL-18. The removal of palmitoyl groups from NLRP3 is a crucial step in the activation of the NLRP3 inflammasome. Thus, the potential inhibitors that regulate the palmitoylation and inactivation of NLRP3 may significantly diminish sepsis-induced cardiac dysfunction. PURPOSE: The present study sought to explore the effects of the prospective flavonoid compounds targeting NLRP3 on SCM and to elucidate the associated underlying mechanisms. STUDY DESIGN: The palmitoylation and activation of NLRP3 were detected in H9c2 cells and C57BL/6 J mice. METHODS/RESULTS: Echocardiography, histological staining, western blotting, co-immunoprecipitation, qPCR, ELISA and network pharmacology were used to assess the impact of vaccarin (VAC) on SCM in mice subjected to lipopolysaccharide (LPS) injection. From the collection of 74 compounds, we identified that VAC had the strongest capability to suppress NLRP3 luciferase report gene activity in cardiomyocytes, and the anti-inflammatory characteristics of VAC were further ascertained by the network pharmacology. Exposure of LPS triggered apoptosis, inflammation, oxidative stress, mitochondrial disorder in cardiomyocytes. The detrimental alterations were significantly reversed upon VAC treatment in both septic mice and H9c2 cells exposed to LPS. In vivo experiments demonstrated that VAC treatment alleviated septic myocardial injury, indicated by enhanced cardiac function parameters, preserved cardiac structure, and reduced inflammation/oxidative response. Mechanistically, VAC induced NLRP3 palmitoylation to inactivate NLRP3 inflammasome by acting on zDHHC12. In support, the NLRP3 agonist ATP and the acylation inhibitor 2-bromopalmitate (2-BP) prevented the effects of VAC. CONCLUSION: Our findings suggest that VAC holds promise in protecting against SCM by mitigating cardiac oxidative stress and inflammation via priming NLRP3 palmitoylation and inactivation. These results lay the solid basis for further assessment of the therapeutic potential of VAC against SCM.


Assuntos
Cardiomiopatias , Inflamassomos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sepse , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Cardiomiopatias/tratamento farmacológico , Sepse/tratamento farmacológico , Sepse/complicações , Camundongos , Masculino , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Lipoilação/efeitos dos fármacos , Ratos , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular , Lipopolissacarídeos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Interleucina-1beta/metabolismo , Interleucina-18/metabolismo
9.
Redox Biol ; 77: 103373, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39357422

RESUMO

The role of gut microbiome in acute kidney injury (AKI) is increasing recognized. Caloric restriction (CR) has been shown to enhance the resistance to ischemia/reperfusion injury to the kidneys in rodents. Nonetheless, it is unknown whether intestinal microbiota mediated CR protection against ischemic/reperfusion-induced injury (IRI) in the kidneys. Herein, we showed that CR ameliorated IRI-elicited renal dysfunction, oxidative stress, apoptosis, and inflammation, along with enhanced intestinal barrier function. In addition, gut microbiota depletion blocked the favorable effects of CR in AKI mice. 16S rRNA and metabolomics analysis showed that CR enriched the gut commensal Parabacteroides goldsteinii (P. goldsteinii) and upregulated the level of serum metabolite dodecafluorpentan. Intestinal colonization of P. goldsteinii and oral administration of dodecafluorpentan showed the similar beneficial effects as CR in AKI mice. RNA sequencing and experimental data revealed that dodecafluorpentan protected against AKI-induced renal injury by antagonizing oxidative burst and NFκB-induced NLRP3 inflammasome activation. In addition, we screened and found that Hamaudol improved renal insufficiency by boosting the growth of P. goldsteinii. Our results shed light on the role of intestinal microbiota P. goldsteinii and serum metabolites dodecafluorpentan in CR benefits to AKI.


Assuntos
Injúria Renal Aguda , Restrição Calórica , Microbioma Gastrointestinal , Animais , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/microbiologia , Injúria Renal Aguda/etiologia , Camundongos , Masculino , Modelos Animais de Doenças , Estresse Oxidativo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/microbiologia , Metabolômica/métodos , RNA Ribossômico 16S/genética
10.
Eur J Med Chem ; 187: 111959, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846830

RESUMO

Chlorophyll a exhibits excellent photosensitive activity in photosynthesis. The unstability limited its application as photoensitizer drug in photodynamic therapy. Here a series of novel chlorophyll a degradation products pyropheophorbide-a derivatives were synthesized and evaluated for lung cancer in PDT. These compounds have strong absorption in 660-670 nm with high molar extinction coefficient, and fluorescence emission in 660-675 nm upon excitation with 410-415 nm light. They all have much higher ROS yields than pyropheophorbide-a, and compound 10 was even higher than [3-(1-hexyloxyethyl)]-pyrophoeophorbide a (HPPH). Distinctive phototoxicity was observed in vitro and the inhibition effect was in light dose-dependent and drug dose-dependent style. They can effectively inhibit the growth of lung tumor in vivo. Among them, compound 8 and 11 have outstanding photodynamic anti-tumor effects without obvious skin photo-toxicity, so they can act as new drug candidates for photodynamic therapy.


Assuntos
Antineoplásicos/farmacologia , Clorofila A/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Células A549 , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Clorofila A/síntese química , Clorofila A/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Imagem Óptica , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
11.
Biomed Pharmacother ; 95: 144-152, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28841454

RESUMO

Angiogenesis is a complex physiological process involving the growth of new capillaries. The impaired angiogenesis plays important roles in chronic wounds and ischaemic heart disease. Fibroblast growth factor 2 (FGF-2) exerts pro-angiogenic actions via activation of fibroblast growth factor receptor 1 (FGFR-1). We have identified that vaccarin increased the angiogenic activity of endothelial cells. In this study, we investigated whether FGF-2-mediated FGFR1 signaling pathway participated in vaccarin-mediated neovascularization formation. Human microvascular endothelial cells (HMEC)-1 were incubated with various doses of vaccarin. Our results showed that vaccarin dose-dependently up-regulated FGF-2 levels and phosphorylation of FGFR-1. Neutralization of FGF-2 with anti-FGF-2 antibody also abolished the proliferation, migration and tube formation of HMEC-1 cells induced by vaccarin. Both FGFR-1 inhibitor SU5402 and FGFR-1 siRNA blocked vaccarin-induced cell cycle progression and angiogenesis. The mouse Matrigel model study further unveiled that vaccarin stimulated the neovascularization and microvessel density in vivo, which was prevented by FGFR-1 inhibitor SU5402. Taken together, our results demonstrated for the first time that vaccarin was a novel inducer for FGF-2 expression, followed by phosphorylation of FGFR-1 and subsequent angiogenic behaviors in endothelial cells. Vaccarin may be a promising candidate of angiogenesis activator for neurovascular repair or therapy.


Assuntos
Células Endoteliais/fisiologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosídeos/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Ciclo Celular , Linhagem Celular , Movimento Celular , Proliferação de Células , Colágeno , Combinação de Medicamentos , Fator 2 de Crescimento de Fibroblastos/genética , Flavonoides/química , Glicosídeos/administração & dosagem , Glicosídeos/química , Glicosídeos/metabolismo , Humanos , Laminina , Camundongos , Camundongos Endogâmicos ICR , Neovascularização Fisiológica , Proteoglicanas , Interferência de RNA , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais
12.
Life Sci ; 167: 6-11, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27838210

RESUMO

The vascular endothelium is recognized as a barrier between blood and blood vessel wall. The abnormality of vascular endothelium is critical for atherosclerosis, hypertension and diabetes. Oxidative stress, inflammation, obesity, hyperlipidemia and insulin resistance are major contributors to endothelial dysfunction in cardiovascular disorders. Therapeutic strategies against endothelial dysfunction are developed to prevent and treat vascular lesions. In recent years, long non-coding RNAs (lncRNAs) are emerged as novel modulators in the proliferation and differentiation of various cell types. LncRNAs have attracted considerable attention due to their multiple biological roles in the prognostic prediction, diagnosis and treatment of cancers. LncRNAs are also involved in pathogenesis of cardiovascular diseases. However, the correlations between lncRNAs and endothelial dysfunction are still largely obscure. In this review, we will highlight recent updates associated to the importance of lncRNAs in the pathogenesis of endothelial dysfunction in cardiovascular disorders, and the basic molecular mechanisms of lncRNAs in regulation of endothelial function are also discussed. LncRNAs may become promising therapeutic targets in endothelial dysfunction-related diseases.


Assuntos
Doenças Cardiovasculares/genética , Diabetes Mellitus/genética , Células Endoteliais/patologia , RNA Longo não Codificante/genética , Animais , Aterosclerose/genética , Aterosclerose/patologia , Doenças Cardiovasculares/patologia , Diabetes Mellitus/patologia , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Humanos , Hipertensão/genética , Hipertensão/patologia , RNA Longo não Codificante/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA