Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(11): 3036-41, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929333

RESUMO

cAMP signaling plays a key role in regulating pain sensitivity. Here, we uncover a previously unidentified molecular mechanism in which direct phosphorylation of the exchange protein directly activated by cAMP 1 (EPAC1) by G protein kinase 2 (GRK2) suppresses Epac1-to-Rap1 signaling, thereby inhibiting persistent inflammatory pain. Epac1(-/-) mice are protected against inflammatory hyperalgesia in the complete Freund's adjuvant (CFA) model. Moreover, the Epac-specific inhibitor ESI-09 inhibits established CFA-induced mechanical hyperalgesia without affecting normal mechanical sensitivity. At the mechanistic level, CFA increased activity of the Epac target Rap1 in dorsal root ganglia of WT, but not of Epac1(-/-), mice. Using sensory neuron-specific overexpression of GRK2 or its kinase-dead mutant in vivo, we demonstrate that GRK2 inhibits CFA-induced hyperalgesia in a kinase activity-dependent manner. In vitro, GRK2 inhibits Epac1-to-Rap1 signaling by phosphorylation of Epac1 at Ser-108 in the Disheveled/Egl-10/pleckstrin domain. This phosphorylation event inhibits agonist-induced translocation of Epac1 to the plasma membrane, thereby reducing Rap1 activation. Finally, we show that GRK2 inhibits Epac1-mediated sensitization of the mechanosensor Piezo2 and that Piezo2 contributes to inflammatory mechanical hyperalgesia. Collectively, these findings identify a key role of Epac1 in chronic inflammatory pain and a molecular mechanism for controlling Epac1 activity and chronic pain through phosphorylation of Epac1 at Ser-108. Importantly, using the Epac inhibitor ESI-09, we validate Epac1 as a potential therapeutic target for chronic pain.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Hiperalgesia/fisiopatologia , Inflamação/complicações , Nociceptividade/fisiologia , Dor/fisiopatologia , Sequência de Aminoácidos , Animais , Doença Crônica , Adjuvante de Freund/toxicidade , Gânglios Espinais/fisiopatologia , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Hiperalgesia/etiologia , Inflamação/induzido quimicamente , Canais Iônicos/fisiologia , Mecanorreceptores/fisiologia , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/fisiologia , Dor/etiologia , Limiar da Dor/fisiologia , Fosforilação , Fosfosserina/metabolismo , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP/fisiologia
2.
Bioorg Med Chem Lett ; 27(23): 5163-5166, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29100797

RESUMO

Exchange proteins directly activated by cAMP (EPACs) are critical cAMP-dependent signaling pathway mediators that play important roles in cancer, diabetes, heart failure, inflammations, infections, neurological disorders and other human diseases. EPAC specific modulators are urgently needed to explore EPAC's physiological function, mechanism of action and therapeutic applications. On the basis of a previously identified EPAC specific inhibitor hit ESI-09, herein we have designed and synthesized a novel series of 2-substituted phenyl-N-phenyl-2-oxoacetohydrazonoyl cyanides as potent EPAC inhibitors. Compound 31 (ZL0524) has been discovered as the most potent EPAC inhibitor with IC50 values of 3.6 µM and 1.2  µM against EPAC1 and EPAC2, respectively. Molecular docking of 31 onto an active EPAC2 structure predicts that 31 occupies the hydrophobic pocket in cAMP binding domain (CBD) and also opens up new space leading to the solvent region. These findings provide inspirations for discovering next generation of EPAC inhibitors.


Assuntos
Cianetos/química , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Sítios de Ligação , Cianetos/metabolismo , AMP Cíclico/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
3.
J Biol Chem ; 290(2): 1086-95, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25451935

RESUMO

The organellar targeting of two-pore channels (TPCs) and their capacity to associate as homo- and heterodimers may be critical to endolysosomal signaling. A more detailed understanding of the functional association of vertebrate TPC1-3 is therefore necessary. We report here that when stably expressed in HEK293 cells, human (h) TPC1 and chicken (c) TPC3 were specifically targeted to different subpopulations of endosomes, hTPC2 was specifically targeted to lysosomes, and rabbit (r) TPC3 was specifically targeted to both endosomes and lysosomes. Intracellular dialysis of NAADP evoked a Ca(2+) transient in HEK293 cells that stably overexpressed hTPC1, hTPC2, and rTPC3, but not in cells that stably expressed cTPC3. The Ca(2+) transients induced in cells that overexpressed endosome-targeted hTPC1 were abolished upon depletion of acidic Ca(2+) stores by bafilomycin A1, but remained unaffected following depletion of endoplasmic reticulum stores by thapsigargin. In contrast, Ca(2+) transients induced via lysosome-targeted hTPC2 and endolysosome-targeted rTPC3 were abolished by bafilomycin A1 and markedly attenuated by thapsigargin. NAADP induced marked Ca(2+) transients in HEK293 cells that stably coexpressed hTPC2 with hTPC1 or cTPC3, but failed to evoke any such response in cells that coexpressed interacting hTPC2 and rTPC3 subunits. We therefore conclude that 1) all three TPC subtypes may support Ca(2+) signaling from their designate acidic stores, and 2) lysosome-targeted (but not endosome-targeted) TPCs support coupling to the endoplasmic reticulum.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Endossomos/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/biossíntese , Canais de Cálcio/química , Galinhas , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Endossomos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrolídeos/administração & dosagem , NADP/administração & dosagem , NADP/análogos & derivados , Coelhos , Tapsigargina/administração & dosagem
4.
Int J Mol Sci ; 17(5)2016 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-27213346

RESUMO

Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biodegradação Ambiental , Tecnologia sem Fio
5.
Nature ; 459(7246): 596-600, 2009 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19387438

RESUMO

Ca(2+) mobilization from intracellular stores represents an important cell signalling process that is regulated, in mammalian cells, by inositol-1,4,5-trisphosphate (InsP(3)), cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate (NAADP). InsP(3) and cyclic ADP ribose cause the release of Ca(2+) from sarcoplasmic/endoplasmic reticulum stores by the activation of InsP(3) and ryanodine receptors (InsP(3)Rs and RyRs). In contrast, the nature of the intracellular stores targeted by NAADP and the molecular identity of the NAADP receptors remain controversial, although evidence indicates that NAADP mobilizes Ca(2+) from lysosome-related acidic compartments. Here we show that two-pore channels (TPCs) comprise a family of NAADP receptors, with human TPC1 (also known as TPCN1) and chicken TPC3 (TPCN3) being expressed on endosomal membranes, and human TPC2 (TPCN2) on lysosomal membranes when expressed in HEK293 cells. Membranes enriched with TPC2 show high affinity NAADP binding, and TPC2 underpins NAADP-induced Ca(2+) release from lysosome-related stores that is subsequently amplified by Ca(2+)-induced Ca(2+) release by InsP(3)Rs. Responses to NAADP were abolished by disrupting the lysosomal proton gradient and by ablating TPC2 expression, but were only attenuated by depleting endoplasmic reticulum Ca(2+) stores or by blocking InsP(3)Rs. Thus, TPCs form NAADP receptors that release Ca(2+) from acidic organelles, which can trigger further Ca(2+) signals via sarcoplasmic/endoplasmic reticulum. TPCs therefore provide new insights into the regulation and organization of Ca(2+) signals in animal cells, and will advance our understanding of the physiological role of NAADP.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , NADP/análogos & derivados , Organelas/metabolismo , Animais , Canais de Cálcio/genética , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Galinhas , Humanos , Concentração de Íons de Hidrogênio , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , NADP/metabolismo , NADP/farmacologia , Organelas/efeitos dos fármacos , Ligação Proteica
6.
Pflugers Arch ; 466(7): 1301-16, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24121765

RESUMO

In the central nervous system, canonical transient receptor potential (TRPC) channels have been implicated in mediating neuronal excitation induced by stimulating metabotropic receptors, including group 1 metabotropic glutamate receptors (mGluRs). Lateral septal (LS) neurons express high levels of TRPC4 and group I mGluRs. However, to what extent native TRPC4-containing channels (TRPC4-cc) are activated as well as the impact of different levels of TRPC4-cc activation on neuronal excitability remain elusive. Here, we report that stimulating LS neurons with group I mGluR agonist, (S)-3,5-DHPG, causes either an immediate increase in firing rate or an initial burst followed by a pause of firing, which can be correlated with below-threshold-depolarization (BTD) or above-threshold-plateau-depolarization (ATPD), respectively, in whole-cell recordings. The early phase of BTD and the entire ATPD are completely absent in neurons from TRPC4−/− mice. Moreover, in the same LS neurons, BTD can be converted to ATPD at more depolarized potentials or with a brief current injection, suggesting that BTD and ATPD may represent partial and full activations of TRPC4-cc, respectively. We show that coincident mGluR stimulation and depolarization is required to evoke strong TRPC4-cc current, and Na+ and Ca2+ influx, together with dynamic changes of intracellular Ca(2+), are essential for ATPD induction. Our results suggest that TRPC4-cc integrates metabotropic receptor stimulation with intracellular Ca(2+) signals to generate two interconvertible depolarization responses to affect excitability of LS neurons in distinct fashions.


Assuntos
Potenciais de Ação , Neurônios/metabolismo , Núcleos Septais/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Agonistas de Aminoácidos Excitatórios/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Resorcinóis/farmacologia , Núcleos Septais/citologia , Sódio/metabolismo , Canais de Cátion TRPC/genética
7.
Micromachines (Basel) ; 14(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37630045

RESUMO

Silicon-on-insulator (SOI) wafers are crucial raw materials in the manufacturing process of microelectromechanical systems (MEMS). Residual stresses generated inside the wafers during the fabrication process can seriously affect the performance, reliability, and yield of MEMS devices. In this paper, a low-cost method based on mechanical modeling is proposed to characterize the residual stresses in SOI wafers in order to calculate the residual stress values based on the deformation of the beams. Based on this method, the residual strain of the MEMS beam, and thus the residual stress in the SOI wafer, were experimentally determined. The results were also compared with the residual stress results calculated from the deflection of the rotating beam to demonstrate the validity of the results obtained by this method. This method provides valuable theoretical reference and data support for the design and optimization of devices based on SOI-MEMS technology. It provides a lower-cost solution for the residual stress measurement technique, making it available for a wide range of applications.

8.
iScience ; 26(2): 106059, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36824275

RESUMO

Basic leucine zipper ATF-like transcription factor 2 (BATF2), an interferon-activated immune response regulator, is a key factor responsible for myeloid differentiation and depletion of HSC during chronic infection. To delineate the mechanism of BATF2 function in HSCs, we assessed Batf2 KO mice during chronic infection and found that they produced less pro-inflammatory cytokines, less immune cell recruitment to the spleen, and impaired myeloid differentiation with better preservation of HSC capacity compared to WT. Co-IP analysis revealed that BATF2 forms a complex with JUN to amplify pro-inflammatory signaling pathways including CCL5 during infection. Blockade of CCL5 receptors phenocopied Batf2 KO differentiation defects, whereas treatment with recombinant CCL5 was sufficient to rescue IFNγ-induced myeloid differentiation and recruit more immune cells to the spleen in Batf2 KO mice. By revealing the mechanism of BATF2-induced myeloid differentiation of HSCs, these studies elucidate potential therapeutic strategies to boost immunity while preserving HSC function during chronic infection.

9.
J Biol Chem ; 286(11): 9136-40, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21216967

RESUMO

The mechanism by which cyclic adenosine diphosphate ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) mobilize intracellular Ca(2+) stores remains controversial. It is open to question whether cADPR regulates ryanodine receptors (RyRs) directly, as originally proposed, or indirectly by promoting Ca(2+) uptake into the sarco/endoplasmic reticulum by sarco/endoplasmic reticulum Ca(2+)-ATPases. Conversely, although we have proposed that NAADP mobilizes endolysosomal Ca(2+) stores by activating two-pore domain channels (TPCs), others suggest that NAADP directly activates RyRs. We therefore assessed Ca(2+) signals evoked by intracellular dialysis from a patch pipette of cADPR and NAADP into HEK293 cells that stably overexpress either TPC1, TPC2, RyR1, or RyR3. No change in intracellular Ca(2+) concentration was triggered by cADPR in either wild-type HEK293 cells (which are devoid of RyRs) or in cells that stably overexpress TPC1 and TPC2, respectively. By contrast, a marked Ca(2+) transient was triggered by cADPR in HEK293 cells that stably expressed RyR1 and RyR3. The Ca(2+) transient was abolished following depletion of endoplasmic reticulum stores by thapsigargin and block of RyRs by dantrolene but not following depletion of acidic Ca(2+) stores by bafilomycin. By contrast, NAADP failed to evoke a Ca(2+) transient in HEK293 cells that expressed RyR1 or RyR3, but it induced robust Ca(2+) transients in cells that stably overexpressed TPC1 or TPC2 and in a manner that was blocked following depletion of acidic stores by bafilomycin. We conclude that cADPR triggers Ca(2+) release by activating RyRs but not TPCs, whereas NAADP activates TPCs but not RyRs.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , ADP-Ribose Cíclica/metabolismo , Retículo Endoplasmático/metabolismo , NADP/análogos & derivados , Canais de Cálcio/genética , ADP-Ribose Cíclica/genética , Retículo Endoplasmático/genética , Células HEK293 , Humanos , NADP/genética , NADP/metabolismo
10.
J Biol Chem ; 286(38): 33436-46, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21795696

RESUMO

Transient receptor potential canonical (TRPC) channels are Ca(2+)-permeable nonselective cation channels implicated in diverse physiological functions, including smooth muscle contractility and synaptic transmission. However, lack of potent selective pharmacological inhibitors for TRPC channels has limited delineation of the roles of these channels in physiological systems. Here we report the identification and characterization of ML204 as a novel, potent, and selective TRPC4 channel inhibitor. A high throughput fluorescent screen of 305,000 compounds of the Molecular Libraries Small Molecule Repository was performed for inhibitors that blocked intracellular Ca(2+) rise in response to stimulation of mouse TRPC4ß by µ-opioid receptors. ML204 inhibited TRPC4ß-mediated intracellular Ca(2+) rise with an IC(50) value of 0.96 µm and exhibited 19-fold selectivity against muscarinic receptor-coupled TRPC6 channel activation. In whole-cell patch clamp recordings, ML204 blocked TRPC4ß currents activated through either µ-opioid receptor stimulation or intracellular dialysis of guanosine 5'-3-O-(thio)triphosphate (GTPγS), suggesting a direct interaction of ML204 with TRPC4 channels rather than any interference with the signal transduction pathways. Selectivity studies showed no appreciable block by 10-20 µm ML204 of TRPV1, TRPV3, TRPA1, and TRPM8, as well as KCNQ2 and native voltage-gated sodium, potassium, and calcium channels in mouse dorsal root ganglion neurons. In isolated guinea pig ileal myocytes, ML204 blocked muscarinic cation currents activated by bath application of carbachol or intracellular infusion of GTPγS, demonstrating its effectiveness on native TRPC4 currents. Therefore, ML204 represents an excellent novel tool for investigation of TRPC4 channel function and may facilitate the development of therapeutics targeted to TRPC4.


Assuntos
Indóis/farmacologia , Piperidinas/farmacologia , Canais de Cátion TRPC/antagonistas & inibidores , Animais , Cátions/metabolismo , Feminino , Corantes Fluorescentes/metabolismo , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Indóis/química , Intestinos/citologia , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Piperidinas/química , Receptores Muscarínicos/metabolismo , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/metabolismo , Relação Estrutura-Atividade , Canais de Cátion TRPC/metabolismo
11.
Micromachines (Basel) ; 13(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35334651

RESUMO

As a typical type of MEMS acceleration sensor, the inertial switch can alter its on-off state while the environmental accelerations satisfy threshold value. An exhaustive summary of the design concept, performance aspects, and fabrication methods of the micro electromechanical system (MEMS) inertial switch is provided. Different MEMS inertial switch studies were reviewed that emphasized acceleration directional and threshold sensitivity, contact characteristics, and their superiorities and disadvantages. Furthermore, the specific fabrication methods offer an applicability reference for the preparation process for the designed inertial switch, including non-silicon surface micromachining technology, standard silicon micromachining technology, and the special fabrication method for the liquid inertial switch. At the end, the main conclusions of the current challenges and prospects about MEMS inertial switches are drawn to assist with the development of research in the field of future engineering applications.

12.
Artigo em Inglês | MEDLINE | ID: mdl-35819402

RESUMO

Reducing lunar dust adhesion to various material surfaces is important for protecting equipment from damage during lunar exploration missions. In this study, we investigate the lunar dust-mitigation ability and dust adhesion force of aluminum (Al) substrates prepared using different etching methods. Among them, composite etching methods (combining chemical and electrochemical steps) can result in multiscale structures with micro- and nanoroughness, reducing the contact area between the substrate and thus decreasing lunar dust adhesion. After composite etching, the dust adhesion force of the Al substrate was significantly reduced by 80% from 45.53 to 8.89 nN. The dust adhesion force of Al substrates dominates their dust-mitigation performance in floating dust environments. The lunar dust coverage (2.19%) of the Al substrate modified by composite etching (placed with a tilt angle of 90°) was 4-fold lower than that of the pristine Al substrate (9.11%), indicating excellent lunar-dust repellence. In addition, other factors such as tilt angle of the substrate and dust loading significantly affect dust-mitigation performance of the modified Al substrates. The Al substrate with an excellent dust-mitigation ability highlights good potential for lunar exploration missions.

13.
J Mol Biol ; 433(22): 167258, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34547329

RESUMO

The retinoic acid receptor-related orphan receptor γ (RORγ) is a ligand-dependent transcription factor of the nuclear receptor super family that underpins metabolic activity, immune function, and cancer progression. Despite being a valuable drug target in health and disease, our understanding of the ligand-dependent activities of RORγ is far from complete. Like most nuclear receptors, RORγ must recruit coregulatory protein to enact the RORγ target gene program. To date, a majority of structural studies have been focused exclusively on the RORγ ligand-binding domain and the ligand-dependent recruitment of small peptide segments of coregulators. Herein, we examine the ligand-dependent assembly of full length RORγ:coregulator complexes on cognate DNA response elements using structural proteomics and small angle x-ray scattering. The results from our studies suggest that RORγ becomes elongated upon DNA recognition, preventing long range interdomain crosstalk. We also determined that the DNA binding domain adopts a sequence-specific conformation, and that coregulatory protein may be able to 'sense' the ligand- and DNA-bound status of RORγ. We propose a model where ligand-dependent coregulator recruitment may be influenced by the sequence of the DNA to which RORγ is bound. Overall, the efforts described herein will illuminate important aspects of full length RORγ and monomeric orphan nuclear receptor target gene regulation through DNA-dependent conformational changes.


Assuntos
Coativador 3 de Receptor Nuclear/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/química , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Elementos de Resposta , Animais , Sítios de Ligação , DNA/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Espectrometria de Massas/métodos , Camundongos Endogâmicos BALB C , Coativador 3 de Receptor Nuclear/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
14.
Pflugers Arch ; 459(4): 579-92, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19888597

RESUMO

Transient receptor potential A1 (TRPA1) forms nonselective cation channels implicated in acute inflammatory pain and nociception. The mechanism of ligand activation of TRPA1 may involve either covalent modification of cysteine residues or conventional reversible ligand-receptor interactions. For certain electrophilic prostaglandins, covalent modification has been considered as the main mechanism involved in their stimulatory effect on TRPA1. Because some nonsteroidal anti-inflammatory drugs (NSAIDs) are structural analogs of prostaglandins, we examined several nonelectrophilic NSAIDs on TRPA1 activation using electrophysiological techniques and intracellular Ca(2+) measurements and found that a selected group of NSAIDs can act as TRPA1 agonists. Extracellularly applied flufenamic, niflumic, and mefenamic acid, as well as flurbiprofen, ketoprofen, diclofenac, and indomethacin, rapidly activated rat TRPA1 expressed in Xenopus oocytes and human TRPA1 endogenously expressed in WI-38 fibroblasts. Similarly, the NSAID ligands activated human TRPA1 inducibly expressed in HEK293 cells, but the responses were absent in uninduced and parental HEK293 cells. The response to fenamate agonists was blocked by TRPA1 antagonists, AP-18, HC-030031, and ruthenium red. At subsaturating concentrations, the fenamate NSAIDs also potentiate the activation of TRPA1 by allyl isothiocyanate, cinnamaldehyde, and cold, demonstrating positive synergistic interactions with other well-characterized TRPA1 activators. Importantly, among several thermosensitive TRP channels, the stimulatory effect is specific to TRPA1 because flufenamic acid inhibited TRPV1, TRPV3, and TRPM8. We conclude that fenamate NSAIDs are a novel class of potent and reversible direct agonists of TRPA1. This selective group of TRPA1-stimulating NSAIDs should provide a structural basis for developing novel ligands that noncovalently interact with TRPA1 channels.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Canais de Cálcio/metabolismo , Fenamatos/metabolismo , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Anquirinas , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Canais de Cálcio/genética , Linhagem Celular , Fenamatos/farmacologia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Estrutura Molecular , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Ratos , Canal de Cátion TRPA1 , Canais de Cátion TRPC , Canais de Cátion TRPM/genética , Canais de Cátion TRPV/genética , Xenopus laevis
15.
Wei Sheng Wu Xue Bao ; 50(8): 1098-103, 2010 Aug.
Artigo em Zh | MEDLINE | ID: mdl-20931880

RESUMO

UNLABELLED: Two linear plasmids, pNSL1 and pNSL1, were detected from Rhodocuccus sp. NS1. OBJECTIVE: Cloning, sequencing and identification of replication origin of the Rhodococcus linear plasmid pNSL1. METHODS: Large amount of linear plasmid DNA was recovered from pulsed-field gels for shotgun-cloning and sequencing, and identification of its replication locus. RESULTS: The complete nucleotide sequence of pNSL1 consisted of 117252 bp, including the conserved 1282-bp telomere sequences among Rhodococcus linear plasmids. pNSL1 encoded 103 open reading frames, including functions of replication, maintenance and transfer etc. A locus, pNSL1. 038 and upstream 767-bp non-coding sequence, was identified for autonomous replication by cloning in an E. coli vector and introduced by electroporation into Nocardia coralline 4. 1037. CONCLUSION: Cloning and sequencing of Rhodococcus linear plasmid pNSL1, and identification of its replication origin.


Assuntos
Plasmídeos , Origem de Replicação , Rhodococcus/genética , Sequência de Bases , Clonagem Molecular , Dados de Sequência Molecular
16.
Commun Biol ; 3(1): 165, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265480

RESUMO

As approximately 70% of human breast tumors are estrogen receptor α (ERα)-positive, estrogen and ERα play essential roles in breast cancer development. By interrupting the ERα signaling pathway, endocrine therapy has been proven to be an effective therapeutic strategy. In this study, we identified a mechanism by which Transcription Start Site (TSS)-associated histone H3K27 acetylation signals the Super Elongation Complex (SEC) to regulate transcriptional elongation of the ESR1 (ERα) gene. SEC interacts with H3K27ac on ESR1 TSS through its scaffold protein AFF4. Depletion of AFF4 by siRNA or CRISPR/Cas9 dramatically reduces expression of ESR1 and its target genes, consequently inhibiting breast cancer cell growth. More importantly, a AFF4 mutant which lacks H3K27ac interaction failed to rescue ESR1 gene expression, suggesting H3K27 acetylation at TSS region is a key mark bridging the transition from transcriptional initiation to elongation, and perturbing SEC function can be an alternative strategy for targeting ERα signaling pathway at chromatin level.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Elongação da Transcrição Genética , Acetilação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Histonas/genética , Humanos , Células MCF-7 , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transdução de Sinais , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
17.
Curr Protoc Mol Biol ; 125(1): e78, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30371021

RESUMO

Differential Scanning Fluorimetry Guided Refolding (DGR) is a simple methodology that can be used to rapidly screen for and identify conditions capable of accurately refolding protein preparations, such as those obtained from Escherichia coli inclusion bodies. It allows for the production in E. coli of functional proteins that would otherwise require far more expensive production methods. This unit describes how to set up a DGR refolding assay, perform DGR refolding trials in microplate format, use MeltTraceur Web software to interactively analyze the resulting data, scale-up protein production via refolding, and lastly, validate that the protein is properly folded. © 2018 by John Wiley & Sons, Inc.


Assuntos
Bioquímica/métodos , Cromatografia em Gel/métodos , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Fluorometria/métodos , Corpos de Inclusão/metabolismo , Redobramento de Proteína , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Corpos de Inclusão/química , Corpos de Inclusão/genética
18.
Cancer Lett ; 432: 47-55, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29859875

RESUMO

Transient receptor potential canonical 6 (TRPC6) proteins form receptor-operated Ca2+-permeable channels, which have been thought to bring benefit to the treatment of diseases, including cancer. However, selective antagonists for TRPC channels are rare and none of them has been tested against gastric cancer. Compound 14a and analogs were synthesized by chemical elaboration of previously reported TRPC3/6/7 agonist 4o. 14a had very weak agonist activity at TRPC6 expressed in HEK293 cells but exhibited strong inhibition on both 4o-mediated and receptor-operated activation of TRPC6 with an IC50 of about 1 µM. When applied to the culture media, 14a suppressed proliferation of AGS and MKN45 cells with IC50 values of 17.1 ±â€¯0.3 and 18.5 ±â€¯1.0 µM, respectively, and inhibited tube formation and migration of cultured human endothelial cells. This anti-tumor effect on gastric cancer was further verified in xenograft models using nude mice. This study has found a new tool compound which shows excellent therapeutic potential against human gastric cancer most likely through targeting TRPC6 channels.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Canal de Cátion TRPC6/antagonistas & inibidores , Animais , Apoptose , Cálcio/metabolismo , Movimento Celular , Proliferação de Células , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Canal de Cátion TRPC6/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Sci Rep ; 7(1): 6200, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740152

RESUMO

Extensive functional studies of the exchange protein directly activated by cAMP (EPAC) family of signaling molecules have demonstrated that EPAC proteins play a fundamental role in several physiological and pathophysiological responses, therefore are attractive drug targets. In this report, the development of a cell-based, medium to high throughput screening assay that is capable of monitoring EPAC-mediated activation of cellular Rap1 in an isoform-specific manner is described. This assay adapts a conventional ELISA format with immobilized RalGDS-RBD as a bait to selectively capture GTP-bound active Rap1. As a result, it fills an urgent need for a cell-based EPAC assay that can be conveniently performed using microtiter plates for the discovery and/or validation of isoform-specific EPAC agonists and antagonists.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Isoformas de Proteínas/metabolismo , Complexo Shelterina
20.
Eur J Med Chem ; 134: 62-71, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28399451

RESUMO

Two series of novel EPAC antagonists are designed, synthesized and evaluated in an effort to develop diversified analogues based on the scaffold of the previously identified high-throughput (HTS) hit 1 (ESI-09). Further SAR studies reveal that the isoxazole ring A of 1 can tolerate chemical modifications with either introduction of flexible electron-donating substitutions or structurally restrictedly fusing with a phenyl ring, leading to identification of several more potent and diversified EPAC antagonists (e.g., 10 (NY0617), 14 (NY0460), 26 (NY0725), 32 (NY0561), and 33 (NY0562)) with low micromolar inhibitory activities. Molecular docking studies on compounds 10 and 33 indicate that these two series of compounds bind at a similar site with substantially different interactions with the EPAC proteins. The findings may serve as good starting points for the development of more potent EPAC antagonists as valuable pharmacological probes or potential drug candidates.


Assuntos
Cianetos/química , Cianetos/farmacologia , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Hidrazonas/química , Hidrazonas/farmacologia , Isoxazóis/química , Isoxazóis/farmacologia , Animais , Descoberta de Drogas , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Camundongos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA