Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
BMC Cancer ; 23(1): 184, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823603

RESUMO

BACKGROUND: Double-hit or Triple-hit lymphoma (DHL/THL) is a subset of high-grade B cell lymphoma harboring rearrangements of MYC and BCL2 and/or BCL6, and usually associate with aggressive profile, while current therapies tend to provide poor clinical outcomes and eventually relapsed. Further explorations of DHL at cellular and molecular levels are in demand to offer guidance for clinical activity. METHODS: We collected the peripheral blood of DHL patients and diffused large B cell lymphoma (DLBCL) patients from single institute and converted them into PBMC samples. Mass cytometry was then performed to characterize these samples by 42 antibody markers with samples of healthy people as control. We divided the immune cell subtypes based on the expression profile of surface antigens, and the proportion of each cell subtype was also analyzed. By comparing the data of the DLBCL group and the healthy group, we figured out the distinguished immune cell subtypes of DHL patients according to their abundance and marker expression level. We further analyzed the heterogeneity of DHL samples by pairwise comparison based on clinical characteristics. RESULTS: We found double-positive T cells (DPT) cells were in a significantly high percentage in DHL patients, whereas the ratio of double-negative T cells (DNT) was largely reduced in patients. Besides, CD38 was uniquely expressed at a high level on some naïve B cells of DHL patients, which could be a marker for the diagnosis of DHL (distinguishing from DLBCL), or even be a drug target for the treatment of DHL. In addition, we illustrated the heterogeneity of DHL patients in terms of immune cell landscape, and highlighted TP53 as a major factor that contributes to the heterogeneity of the T cells profile. CONCLUSION: Our study demonstrated the distinct peripheral immune cell profile of DHL patients by contrast to DLBCL patients and healthy people, as well as the heterogeneity within the DHL group, which could provide valuable guidance for the diagnosis and treatment of DHL.


Assuntos
Leucócitos Mononucleares , Linfoma Difuso de Grandes Células B , Humanos , Leucócitos Mononucleares/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfócitos B/metabolismo , Rearranjo Gênico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética
2.
Molecules ; 27(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458742

RESUMO

Nuclear export protein 1 (XPO1), a member of the nuclear export protein-p (Karyopherin-P) superfamily, regulates the transport of "cargo" proteins. To facilitate this important process, which is essential for cellular homeostasis, XPO1 must first recognize and bind the cargo proteins. To inhibit this process, small molecule inhibitors have been designed that inhibit XPO1 activity through covalent binding. However, the scaffolds for these inhibitors are very limited. While virtual screening may be used to expand the diversity of the XPO1 inhibitor skeleton, enormous computational resources would be required to accomplish this using traditional screening methods. In the present study, we report the development of a hybrid virtual screening workflow and its application in XPO1 covalent inhibitor screening. After screening, several promising XPO1 covalent molecules were obtained. Of these, compound 8 performed well in both tumor cell proliferation assays and a nuclear export inhibition assay. In addition, molecular dynamics simulations were performed to provide information on the mode of interaction of compound 8 with XPO1. This research has identified a promising new scaffold for XPO1 inhibitors, and it demonstrates an effective and resource-saving workflow for identifying new covalent inhibitors.


Assuntos
Neoplasias , Receptores Citoplasmáticos e Nucleares , Transporte Ativo do Núcleo Celular , Humanos , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
3.
J Biol Chem ; 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728243

RESUMO

This article has been withdrawn by the authors. Some of the SDHA enzyme activity data were flawed and were not performed and analyzed correctly. The withdrawing authors are in the process of correcting the data and re-evaluating them for resubmission.

4.
Clin Neurol Neurosurg ; 243: 108389, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38870670

RESUMO

BACKGROUND: Hemorrhagic transformation (HT) is a common and serious complication in patients with acute ischemic stroke (AIS) after endovascular thrombectomy (EVT). This study was performed to determine the predictive factors associated with HT in stroke patients with EVT and to establish and validate a nomogram that combines with independent predictors to predict the probability of HT after EVT in patients with AIS. METHODS: All patients were randomly divided into development and validation cohorts at a ratio of 7:3. The least absolute shrinkage and selection operator (LASSO) regression was used to select the optimal factors, and multivariate logistic regression analysis was used to build a clinical prediction model. Calibration plots, decision curve analysis (DCA) and receiver operating characteristic curve (ROC) were generated to assess predictive performance. RESULTS: LASSO regression analysis showed that Alberta Stroke Program Early CT Scores (ASPECTS), international normalized ratio (INR), uric acid (UA), neutrophils (NEU) were the influencing factors for AIS with HT after EVT. A novel prognostic nomogram model was established to predict the possibility of HT with AIS after EVT. The calibration curve showed that the model had good consistency. The results of ROC analysis showed that the AUC of the prediction model established in this study for predicting HT was 0.797 in the development cohort and 0.786 in the validation cohort. CONCLUSION: This study proposes a novel and practical nomogram based on ASPECTS, INR, UA, NEU, which can well predict the probability of HT after EVT in patients with AIS.

5.
Eur J Med Chem ; 272: 116468, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38718626

RESUMO

High expression of ubiquitin-specific protease 10 (USP10) promote the proliferation of hepatocellular carcinoma (HCC), thus the development of USP10 inhibitors holds promise as a novel therapeutic approach for HCC treatment. However, the development of selective USP10 inhibitor is still limited. In this study, we developed a novel USP10 inhibitor for investigating the feasibility of targeting USP10 for the treatment of HCC. Due to high USP10 inhibition potency and prominent selectivity, compound D1 bearing quinolin-4(1H)-one scaffold was identified as a lead compound. Subsequent research revealed that D1 significantly inhibits cell proliferation and clone formation in HCC cells. Mechanistic insights indicated that D1 targets the ubiquitin pathway, facilitating the degradation of YAP (Yes-associated protein), thereby triggering the downregulation of p53 and its downstream protein p21. Ultimately, this cascade leads to S-phase arrest in HCC cells, followed by cell apoptosis. Collectively, our findings highlight D1 as a promising starting point for USP10-positive HCC treatment, underscoring its potential as a vital tool for unraveling the functional intricacies of USP10.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Antineoplásicos , Carcinoma Hepatocelular , Proliferação de Células , Descoberta de Drogas , Neoplasias Hepáticas , Fatores de Transcrição , Ubiquitina Tiolesterase , Proteínas de Sinalização YAP , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Relação Estrutura-Atividade , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas de Sinalização YAP/metabolismo , Estrutura Molecular , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Apoptose/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Linhagem Celular Tumoral
6.
Adv Sci (Weinh) ; 11(13): e2306309, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38269648

RESUMO

Bystander-killing payloads can significantly overcome the tumor heterogeneity issue and enhance the clinical potential of antibody-drug conjugates (ADC), but the rational design and identification of effective bystander warheads constrain the broader implementation of this strategy. Here, graph attention networks (GAT) are constructed for a rational bystander killing scoring model and ADC construction workflow for the first time. To generate efficient bystander-killing payloads, this model is utilized for score-directed exatecan derivatives design. Among them, Ed9, the most potent payload with satisfactory permeability and bioactivity, is further used to construct ADC. Through linker optimization and conjugation, novel ADCs are constructed that perform excellent anti-tumor efficacy and bystander-killing effect in vivo and in vitro. The optimal conjugate T-VEd9 exhibited therapeutic efficacy superior to DS-8201 against heterogeneous tumors. These results demonstrate that the effective scoring approach can pave the way for the discovery of novel ADC with promising bystander payloads to combat tumor heterogeneity.


Assuntos
Imunoconjugados , Linhagem Celular Tumoral , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico
7.
Brain Sci ; 13(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38002557

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cognitive dysfunction and behavioral impairment. We aimed to use principal components factor analysis to explore the association between gait domains and AD under single and dual-task gait assessments. METHODS: A total of 41 AD participants and 41 healthy control (HC) participants were enrolled in our study. Gait parameters were measured using the JiBuEn® gait analysis system. The principal component method was used to conduct an orthogonal maximum variance rotation factor analysis of quantitative gait parameters. Multiple logistic regression was used to adjust for potential confounding or risk factors. RESULTS: Based on the factor analysis, three domains of gait performance were identified both in the free walk and counting backward assessments: "rhythm" domain, "pace" domain and "variability" domain. Compared with HC, we found that the pace factor was independently associated with AD in two gait assessments; the variability factor was independently associated with AD only in the counting backwards assessment; and a statistical difference still remained after adjusting for age, sex and education levels. CONCLUSIONS: Our findings indicate that gait domains may be used as an auxiliary diagnostic index for Alzheimer's disease.

8.
J Med Chem ; 65(13): 9096-9125, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35671249

RESUMO

Bruton's tyrosine kinase proteolysis-targeting chimeras (BTK-PROTACs) have emerged as a promising approach to address the limitations of BTK inhibitors. However, conducting the rational discovery of orally bioavailable BTK-PROTACs presents significant challenges. In this study, dimensionality reduction analysis and model molecule validation were utilized to identify some key structural features for improving the oral absorption of BTK-PROTACs. The results were applied to optimize the newly discovered BTK-PROTACs B1 and B2. Compound C13 was discovered with improved oral bioavailability, high BTK degradation activity, and selectivity. It exhibited inhibitory effects against different hematologic cancer cells and attenuated the BTK-related signaling pathway. The oral administration of C13 effectively reduced BTK protein levels and suppressed tumor growth. This study led to the discovery of a new orally bioavailable BTK-PROTAC for the treatment of lymphoma, and we hope that the strategy will find wide utility.


Assuntos
Linfoma , Inibidores de Proteínas Quinases , Tirosina Quinase da Agamaglobulinemia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Linfoma/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
9.
Eur J Med Chem ; 235: 114257, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367710

RESUMO

Multiple myeloma (MM) is a highly malignant hematologic cancer that occurs when an atypical plasma cell develops in the bone marrow and reproduces quickly. Despite varies of new drugs have been developed or under clinic trial, MM is still essentially incurable, while XPO1 inhibition has emerged as a promising therapeutic strategy in the treatment of MM. Using the second-generation XPO1 inhibitor KPT-8602 as the lead compound, structure-based optimization provided D4 with high anti-proliferation efficacy (IC50 = 24 nM in MM.1S). In addition, the treatment with D4 significantly induced MM.1S cell cycle arrested and cell apoptosis, which was confirmed as on-target effect by immunofluorescence microscopy and competitive binding assay. Moreover, D4 displayed good metabolic stability over rat plasma and liver microsomes, as well as good pharmacokinetic profile on SD rat model with high drug exposure and decent bioavailability by oral gavage. All these good properties of D4 pave the way for further drug development and clinical application.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Hidrazinas/farmacologia , Carioferinas/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares/metabolismo , Sulfonamidas/farmacologia , Triazóis/farmacologia
10.
ACS Med Chem Lett ; 12(5): 836-845, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34055234

RESUMO

CXC chemokine receptors 1 (CXCR1) and 2 (CXCR2) have been demonstrated to have critical roles in cancer metastasis. Because they share high homology sequences, it is still unclear how to design selective CXCR1 or CXCR2 antagonists. Based on a pharmacophore model we built, compound 2 bearing a 1,5-dihydro-4H-imidazol-4-one scaffold was identified as a selective CXCR2 antagonist with a low CXCR1 antagonism preference. Further optimization and structure-activity relationship studies led to compound C5 that overcame the disadvantages of compound 2 and performed with higher selectivity. It showed excellent oral bioavailability and in vitro anticancer metastasis activity. Further dynamic simulation of the molecular protein complex showed that the amino acid residue K320 of CXCR2 contributed most to the selectivity of C5. This study provides important clues for the design of new CXCR2 selective antagonists, and C5 can be a molecular tool for investigating the difference in the biological function of CXCR1 and CXCR2.

11.
Eur J Med Chem ; 223: 113637, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34147746

RESUMO

Programmed cell death-1/programmed cell death ligand 1 (PD-1/PD-L1) is one of the most promising targets in the field of immune checkpoint blockade therapy. Beginning with our exploration of linkers and structure-activity relationship research, we found that the aromatic ring could replace the linker and aryl group to maintain the satisfactory activity of classic triaryl scaffold inhibitor. Based on previous studies, we designed and synthesized a series of C2-symmetric phenyl-linked compounds, and further tail optimization afforded the inhibitors, which displayed promising inhibitory activity against the PD-1/PD-L1 interaction with IC50 value at the single nanomolar range (C13-C15). Further cell-based PD-1/PD-L1 blockade bioassays indicated that these C2-symmetric molecules could significantly inhibit the PD-1/PD-L1 interaction at the cellular level and restore T cells' immune function at the safety concentrations. The discovery of these phenyl-linked symmetric small molecules showed the potential of simplified-linker and C2-symmetric strategy and provided a basis for developing symmetric small molecule inhibitors of PD-1/PD-L1 interaction. Moreover, C13 and C15 performed stable binding modes to PD-L1 dimeric after computational docking and dynamic simulation, which may serve as a good starting point for further development.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Desenho de Fármacos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Antígeno B7-H1/metabolismo , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Receptor de Morte Celular Programada 1/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
12.
Transl Lung Cancer Res ; 9(1): 111-138, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32206559

RESUMO

Non-small-cell lung cancer (NSCLC), a main subtype of lung cancer, is one of the most common causes of cancer death in men and women worldwide. Circulating tumor DNA (ctDNA), tyrosine kinase inhibitors (TKIs) and immunotherapy have revolutionized both our understanding of NSCLC, from its diagnosis to targeted NSCLC therapies, and its treatment. ctDNA quantification confers convenience and precision to clinical decision making. Furthermore, the implementation of TKI-based targeted therapy and immunotherapy has significantly improved NSCLC patient quality of life. This review provides an update on the methods of ctDNA detection and its impact on therapeutic strategies; therapies that target epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) using TKIs such as osimertinib and lorlatinib; the rise of various resistant mechanisms; and the control of programmed cell death-1 (PD-1), programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte antigen-4 (CTLA-4) by immune checkpoint inhibitors (ICIs) in immunotherapy; blood tumor mutational burden (bTMB) calculated by ctDNA assay as a novel biomarker for immunotherapy. However, NSCLC patients still face many challenges. Further studies and trials are needed to develop more effective drugs or therapies to treat NSCLC.

13.
Oncogene ; 38(39): 6615-6629, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31371779

RESUMO

Oncogenic KIT or PDGFRA tyrosine kinase mutations are compelling therapeutic targets in most gastrointestinal stromal tumors (GISTs), and the KIT inhibitor, imatinib, is therefore standard of care for patients with metastatic GIST. However, some GISTs lose expression of KIT oncoproteins, and therefore become KIT-independent and are consequently resistant to KIT-inhibitor drugs. We identified distinctive biologic features in KIT-independent, imatinib-resistant GISTs as a step towards identifying drug targets in these poorly understood tumors. We developed isogenic GIST lines in which the parental forms were KIT oncoprotein-dependent, whereas sublines had loss of KIT oncoprotein expression, accompanied by markedly downregulated expression of the GIST biomarker, protein kinase C-theta (PRKCQ). Biologic mechanisms unique to KIT-independent GISTs were identified by transcriptome sequencing, qRT-PCR, immunoblotting, protein interaction studies, knockdown and expression assays, and dual-luciferase assays. Transcriptome sequencing showed that cyclin D1 expression was extremely low in two of three parental KIT-dependent GIST lines, whereas cyclin D1 expression was high in each of the KIT-independent GIST sublines. Cyclin D1 inhibition in KIT-independent GISTs had anti-proliferative and pro-apoptotic effects, associated with Rb activation and p27 upregulation. PRKCQ, but not KIT, was a negative regulator of cyclin D1 expression, whereas JUN and Hippo pathway effectors YAP and TAZ were positive regulators of cyclin D1 expression. PRKCQ, JUN, and the Hippo pathway coordinately regulate GIST cyclin D1 expression. These findings highlight the roles of PRKCQ, JUN, Hippo, and cyclin D1 as oncogenic mediators in GISTs that have converted, during TKI-therapy, to a KIT-independent state. Inhibitors of these pathways could be effective therapeutically for these now untreatable tumors.


Assuntos
Ciclina D1/fisiologia , Tumores do Estroma Gastrointestinal/genética , Proteínas Proto-Oncogênicas c-kit/genética , Antineoplásicos/uso terapêutico , Proliferação de Células/fisiologia , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/metabolismo , Humanos , Proteína Quinase C-theta/fisiologia , Inibidores de Proteínas Quinases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA