RESUMO
CuInS2 quantum dots have emerged in the last years as non-toxic alternative to traditional Pb and Cd based quantum dots, especially for biological applications. In this work, the hydrothermal synthesis of alloyed Cu-In-Zn-S quantum dots (CIZS) doped with manganese(II) is explored, with different metal ratios (Mn-CIZSy). The doped quantum dots show the sensitized emission of Mn2+ (approximately ms lifetime), together with the emission of the CIZS structure (approximately µs lifetime). The relative contribution of Mn2+ emission is highly dependent on the composition of the CIZS hosting structure (In:Cu ratio). In addition to that, it is shown that Mn2+ sensitization requires a threshold energy, which suggests the involvement of an intermediate state in the sensitization mechanism. The long-lived emission intensity decay of Mn2+ shows a stable and reversible temperature response in physiological conditions (25-45 °C, pH = 7.4). Mn-CIZSy quantum dots are thus interesting candidates as biological luminescent temperature probe thanks to their easy synthesis, high colloidal stability, insensitivity to dioxygen quenching and quantitative time-gated detection.
RESUMO
Excited states of radical anions derived from the photoreduction of stable organic molecules are suggested to serve as potent reductants. However, excited states of these species are too short-lived to allow bimolecular quenching processes. Recently, the singlet excited state of Meisenheimer complexes, which possess a long-lived excited state, was identified as the competent species for the reduction of challenging organic substrates (-2.63â V vs. SCE, saturated calomel electrode). To produce reasonably stable and simply accessible different Meisenheimer complexes, the addition of nBuLi to readily available aromatic heterocycles was investigated, and the photoreactivity of the generated species was studied. In this paper, we present the straightforward preparation of a family of powerful photoreductants (*Eox<-3â V vs. SCE in their excited states, determined by DFT and time-dependent TD-DFT calculations; DFT, density functional theory) that can induce dehalogenation of electron-rich aryl chlorides and to form C-C bond through radical cyclization. Photophysical analyses and computational studies in combination with experimental mechanistic investigations demonstrate the ability of the adduct to act as a strong electron donor under visible light irradiation.
RESUMO
A dimethyldihydropyrene (DHP) photochromic unit has been functionalized by donor (triphenylamine group) and acceptor (methylpyridinium) substituents. This compound was characterized by NMR, absorption and emission spectroscopies as well as cyclic voltammetry, and its properties were rationalized by theoretical calculations. The incorporation of both electron-donor and -withdrawing groups at the photochromic center allows i) an efficient photo-isomerization of the system when illuminated at low energy (quantum yield: Φc-o =13.3 % at λex =660â nm), ii) the reversible and quantitative formation of two endoperoxyde isomers when illuminated under aerobic conditions at room temperature, and iii) the storage and production of singlet oxygen. The photo-isomerization mechanism was also investigated by spin-flip TD-DFT (SF-TD-DFT) calculations.
RESUMO
The activation of anticancer molecules with visible light constitutes an elegant strategy to target tumors and to improve the selectivity of treatments. In this context, we report here a visible-light activatable bis-platinum complex (DHP-Pt2) incorporating an organic photo-switchable ligand based on the dimethyldihydropyrene moiety. Illumination of this metal complex with red light (660 nm) under air readily produces the corresponding endoperoxide form (CPDO2-Pt2). These two metal complexes exhibit different DNA binding properties and, more importantly, we show that only the photogenerated CPDO2-Pt2 is able to penetrate into cancer cell nuclei, where it is then capable of releasing cytotoxic singlet oxygen. This study represents the first proof-of-concept showing that dimethyldihydropyrene derivatives can be used to transport and deliver singlet oxygen into cancer cell nuclei upon visible-light activation.
RESUMO
Azobenzene derivatives have long been studied for their photochromic behaviour. One of the greatest challenges in this field is the quantitative (E) to (Z) photoconversion triggered by visible light irradiation. In this work, the synthesis and characterization of CuInS2 quantum dots (CIS-QDs) appended with azobenzene units are reported: quantitative (E) â (Z) isomerisation is obtained by visible light (e.g., λex = 533 nm). Interestingly, catalytic amounts of CIS-QDs allow the full photoconversion of ungrafted (E)-azobenzene derivatives into the corresponding (Z)-isomers using visible light. This peculiar behaviour is associated with the direct complexation of the (Z)-isomer on the QD surface.
RESUMO
Molecular systems and devices whose properties can be modulated using light as an external stimulus are the subject of numerous research studies in the fields of materials and life sciences. In this context, the use of photochromic compounds that reversibly switch upon light irradiation is particularly attractive. However, for many envisioned applications, and in particular for biological purposes, illumination with harmful UV light must be avoided and these photoactivable systems must operate in aqueous media. In this context, we have designed a benzo[e]-fused dimethyldihydropyrene compound bearing a methyl-pyridinium electroacceptor group that meets these requirements. This compound (closed state) is able to reversibly isomerize under aerobic conditions into its corresponding cyclophanediene form (open isomer) through the opening of its central carbon-carbon bond. Both the photo-opening and the reverse photoclosing processes are triggered by visible light illumination and proceed with high quantum yields (respectively 14.5% yield at λ = 680 nm and quantitative quantum yield at λ = 470 nm, in water). This system has been investigated by nuclear magnetic resonance and absorption spectroscopy, and the efficient photoswitching behavior was rationalized by spin-flip time-dependent density functional theory calculations. In addition, it is demonstrated that the isomerization from the open to the closed form can be electrocatalytically triggered.
RESUMO
Oxidation of vinamidinium salts with meta-chloroperbenzoic acid is the key synthetic step towards new persistent 1,3-di(amino)oxyallyl radical cations. When applied to parent vinamidines, this protocol allows for a simple straightforward synthesis of α-keto-ß-diimine ligands, for which no convenient synthesis was previously available.