Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(38): e2204038119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095178

RESUMO

Mechanistic details of the signal recognition particle (SRP)-mediated insertion of membrane proteins have been described from decades of in vitro biochemical studies. However, the dynamics of the pathway inside the living cell remain obscure. By combining in vivo single-molecule tracking with numerical modeling and simulated microscopy, we have constructed a quantitative reaction-diffusion model of the SRP cycle. Our results suggest that the SRP-ribosome complex finds its target, the membrane-bound translocon, through a combination of three-dimensional (3D) and 2D diffusional search, together taking on average 750 ms. During this time, the nascent peptide is expected to be elongated only 12 or 13 amino acids, which explains why, in Escherichia coli, no translation arrest is needed to prevent incorrect folding of the polypeptide in the cytosol. We also found that a remarkably high proportion (75%) of SRP bindings to ribosomes occur in the cytosol, suggesting that the majority of target ribosomes bind SRP before reaching the membrane. In combination with the average SRP cycling time, 2.2 s, this result further shows that the SRP pathway is capable of targeting all substrate ribosomes to translocons.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Ribossomos , Partícula de Reconhecimento de Sinal , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Redes e Vias Metabólicas , Peptídeos/química , Peptídeos/metabolismo , Dobramento de Proteína , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo
2.
Nat Methods ; 17(1): 86-92, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740817

RESUMO

Our ability to connect genotypic variation to biologically important phenotypes has been seriously limited by the gap between live-cell microscopy and library-scale genomic engineering. Here, we show how in situ genotyping of a library of strains after time-lapse imaging in a microfluidic device overcomes this problem. We determine how 235 different CRISPR interference knockdowns impact the coordination of the replication and division cycles of Escherichia coli by monitoring the location of replication forks throughout on average >500 cell cycles per knockdown. Subsequent in situ genotyping allows us to map each phenotype distribution to a specific genetic perturbation to determine which genes are important for cell cycle control. The single-cell time-resolved assay allows us to determine the distribution of single-cell growth rates, cell division sizes and replication initiation volumes. The technology presented in this study enables genome-scale screens of most live-cell microscopy assays.


Assuntos
Sistemas CRISPR-Cas , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Engenharia Metabólica/métodos , Técnicas Analíticas Microfluídicas/métodos , Microscopia/métodos , Ciclo Celular , Replicação do DNA , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Biblioteca Gênica , Genótipo , Fenótipo
3.
Science ; 375(6579): 442-445, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35084952

RESUMO

Sequence-specific binding of proteins to DNA is essential for accessing genetic information. We derive a model that predicts an anticorrelation between the macroscopic association and dissociation rates of DNA binding proteins. We tested the model for thousands of different lac operator sequences with a protein binding microarray and by observing kinetics for individual lac repressor molecules in single-molecule experiments. We found that sequence specificity is mainly governed by the efficiency with which the protein recognizes different targets. The variation in probability of recognizing different targets is at least 1.7 times as large as the variation in microscopic dissociation rates. Modulating the rate of binding instead of the rate of dissociation effectively reduces the risk of the protein being retained on nontarget sequences while searching.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Repressores Lac/metabolismo , Regiões Operadoras Genéticas , Sequência de Bases , Proteínas de Ligação a DNA/química , Cinética , Repressores Lac/química , Modelos Biológicos , Análise Serial de Proteínas , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA