RESUMO
In preparing gravity gradient reference maps for navigation purposes, researchers have tended to use a constant value for the density of seawater. However, the actual seawater density at a particular location may vary due to the effects of longitude, latitude and bathymetry. In this study, the right rectangular prism method was used to calculate the disturbing gravity gradient caused by the mass deficiency of seawater for three different seawater profiles in an area east of Taiwan. For this purpose, two seawater density models were used as alternatives to the constant seawater density model, and the alteration in the gravity gradient was calculated to quantify the error in the gravity gradient as a result of using a constant seawater density. The results demonstrated that the error in the gravity gradient can reach 1E for water at large depths. Moreover, the difference between the amplitude of the error of the corrected thermocline and that for the uncorrected seawater density model was found to be quite small. If a gravity gradient reference map with accuracy better than 1E is to be realized, the seawater density cannot be taken as constant during forward modeling.
Assuntos
Água do Mar , Água , Gravitação , TaiwanRESUMO
For inertial navigation systems (INS), as one of the major methods for underwater navigation, errors diverge over time. With the development of geophysical navigation technology, gravity navigation has become an effective method of navigation. Significant changes in the gravity characteristic of the matching region ensure that gravity matching navigation works effectively. In this paper, we combine artificial intelligence algorithms and statistical metrics to classify gravity-matching navigation regions. Firstly, this paper analyzes and extracts gravity anomaly data from a matching region in different ways. Then, a particle swarm optimization (PSO) algorithm is used to optimize the network weights of a back propagation (BP) NN. Finally, based on principal component analysis (PCA) theory and PSO-BP NN, this paper proposes the PPBA method to classify the matching area. Moreover, the Terrain Contour Matching (TERCOM) matching algorithm and gravity anomaly data from the Western Pacific are used to verify the classification performance of the PPBA method. The experiments prove that the PPBA method has a high classification accuracy, and the classification results are consistent with the matching navigation experimental results. This work can provide a reference for designing navigation regions and navigation routes for submarines.