Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 229: 113066, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34929507

RESUMO

Arsenite is a toxic metalloid that causes various adverse effects in the brain. However, the underlying mechanisms of arsenite-induced neurotoxicity remain poorly understood. In this study, both adult beclin 1+/+ and beclin 1+/- mice were employed to establish a model of chronic arsenite exposure by treating with arsenite via drinking water for 6 months. The results clearly demonstrated that exposure to arsenite profoundly caused damage to the cerebral cortex, induced autophagy and impaired autophagic flux in the cerebral cortex. Heterozygous disruption of beclin 1 in animals remarkably alleviated the neurotoxic effects of arsenite. To verify the results obtained in the animals, a permanent U251 cell line was used. After treating of cells with arsenite, similar phenomenon was also observed, showing the significant elevation in the expression levels of autophagy-related genes. Importantly, lysosomal dysfunction caused by arsenite was observed in vitro and in vivo. Either knockdown of beclin 1 in cells or heterozygous disruption of beclin 1 in animals remarkably alleviated the lysosomal dysfunction induced by arsenite. These findings indicate that downregulation of beclin 1 could restore arsenite-induced impaired autophagic flux possibly through improving lysosomal function, and correct that regulation of autophagy via beclin 1 would be an alternative approach for the treatment of arsenite neurotoxicity.


Assuntos
Arsenitos , Animais , Arsenitos/toxicidade , Autofagia , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Encéfalo/metabolismo , Regulação para Baixo , Lisossomos/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA