RESUMO
During limb bud formation, axis polarities are established as evidenced by the spatially restricted expression of key regulator genes. In particular, the mutually antagonistic interaction between the GLI3 repressor and HAND2 results in distinct and non-overlapping anterior-distal Gli3 and posterior Hand2 expression domains. This is a hallmark of the establishment of antero-posterior limb axis polarity, together with spatially restricted expression of homeodomain and other transcriptional regulators. Here, we show that TBX3 is required for establishment of the posterior expression boundary of anterior genes in mouse limb buds. ChIP-seq and differential gene expression analysis of wild-type and mutant limb buds identifies TBX3-specific and shared TBX3-HAND2 target genes. High sensitivity fluorescent whole-mount in situ hybridisation shows that the posterior expression boundaries of anterior genes are positioned by TBX3-mediated repression, which excludes anterior genes such as Gli3, Alx4, Hand1 and Irx3/5 from the posterior limb bud mesenchyme. This exclusion delineates the posterior mesenchymal territory competent to establish the Shh-expressing limb bud organiser. In turn, HAND2 is required for Shh activation and cooperates with TBX3 to upregulate shared posterior identity target genes in early limb buds.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica no Desenvolvimento , Botões de Extremidades , Proteínas com Domínio T , Animais , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Botões de Extremidades/metabolismo , Botões de Extremidades/embriologia , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Regulação para Cima/genética , Padronização Corporal/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Mesoderma/metabolismo , Mesoderma/embriologiaRESUMO
SMAD4 regulates gene expression in response to BMP and TGFß signal transduction, and is required for diverse morphogenetic processes, but its target genes have remained largely elusive. Here, we identify the SMAD4 target genes in mouse limb buds using an epitope-tagged Smad4 allele for ChIP-seq analysis in combination with transcription profiling. This analysis shows that SMAD4 predominantly mediates BMP signal transduction during early limb bud development. Unexpectedly, the expression of cholesterol biosynthesis enzymes is precociously downregulated and intracellular cholesterol levels are reduced in Smad4-deficient limb bud mesenchymal progenitors. Most importantly, our analysis reveals a predominant function of SMAD4 in upregulating target genes in the anterior limb bud mesenchyme. Analysis of differentially expressed genes shared between Smad4- and Shh-deficient limb buds corroborates this function of SMAD4 and also reveals the repressive effect of SMAD4 on posterior genes that are upregulated in response to SHH signaling. This analysis uncovers opposing trans-regulatory inputs from SHH- and SMAD4-mediated BMP signal transduction on anterior and posterior gene expression during the digit patterning and outgrowth in early limb buds.
Assuntos
Padronização Corporal , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Hedgehog/metabolismo , Botões de Extremidades/embriologia , Transdução de Sinais , Proteína Smad4/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Membro Posterior/embriologia , Camundongos , Camundongos Transgênicos , Proteína Smad4/genéticaRESUMO
The key molecular interactions governing vertebrate limb bud development are a paradigm for studying the mechanisms controlling progenitor cell proliferation and specification during vertebrate organogenesis. However, little is known about the cellular heterogeneity of the mesenchymal progenitors in early limb buds that ultimately contribute to the chondrogenic condensations prefiguring the skeleton. We combined flow cytometric and transcriptome analyses to identify the molecular signatures of several distinct mesenchymal progenitor cell populations present in early mouse forelimb buds. In particular, jagged 1 (JAG1)-positive cells located in the posterior-distal mesenchyme were identified as the most immature limb bud mesenchymal progenitors (LMPs), which crucially depend on SHH and FGF signaling in culture. The analysis of gremlin 1 (Grem1)-deficient forelimb buds showed that JAG1-expressing LMPs are protected from apoptosis by GREM1-mediated BMP antagonism. At the same stage, the osteo-chondrogenic progenitors (OCPs) located in the core mesenchyme are already actively responding to BMP signaling. This analysis sheds light on the cellular heterogeneity of the early mouse limb bud mesenchyme and on the distinct response of LMPs and OCPs to morphogen signaling.
Assuntos
Proteínas Hedgehog/metabolismo , Botões de Extremidades/embriologia , Botões de Extremidades/metabolismo , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Hedgehog/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
The molecular analysis of limb bud development in vertebrates continues to fuel our understanding of the gene regulatory networks that orchestrate the patterning, proliferation and differentiation of embryonic progenitor cells. In recent years, systems biology approaches have moved our understanding of the molecular control of limb organogenesis to the next level by incorporating next generation 'omics' approaches, analyses of chromatin architecture, enhancer-promoter interactions and gene network simulations based on quantitative datasets into experimental analyses. This Review focuses on the insights these studies have given into the gene regulatory networks that govern limb development and into the fin-to-limb transition and digit reductions that occurred during the evolutionary diversification of tetrapod limbs.
Assuntos
Evolução Biológica , Padronização Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Redes Reguladoras de Genes , Botões de Extremidades/embriologia , Morfogênese/fisiologia , Transdução de Sinais/fisiologia , Vertebrados/embriologia , Animais , Genes Homeobox/genética , Proteínas Hedgehog/metabolismo , Especificidade da EspécieRESUMO
The analysis of vertebrate limb bud development provides insight of general relevance into the signaling networks that underlie the controlled proliferative expansion of large populations of mesenchymal progenitors, cell fate determination and initiation of differentiation. In particular, extensive genetic analysis of mouse and experimental manipulation of chicken limb bud development has revealed the self-regulatory feedback signaling systems that interlink the main morphoregulatory signaling pathways including BMPs and their antagonists. It this review, we showcase the key role of BMPs and their antagonists during limb bud development. This review provides an understanding of the key morphoregulatory interactions that underlie the highly dynamic changes in BMP activity and signal transduction as limb bud development progresses from initiation and setting-up the signaling centers to determination and formation of the chondrogenic primordia for the limb skeletal elements.
Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Botões de Extremidades/embriologia , Botões de Extremidades/crescimento & desenvolvimento , Transdução de Sinais/fisiologia , Animais , Proteínas Morfogenéticas Ósseas/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Modelos Genéticos , Organogênese/genética , Organogênese/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais/genética , VertebradosRESUMO
The limb bud is of paradigmatic value to understanding vertebrate organogenesis. Recent genetic analysis in mice has revealed the existence of a largely self-regulatory limb bud signalling system that involves many of the pathways that are known to regulate morphogenesis. These findings contrast with the prevailing view that the main limb bud axes develop largely independently of one another. In this Review, we discuss models of limb development and attempt to integrate the current knowledge of the signalling interactions that govern limb skeletal development into a systems model. The resulting integrative model provides insights into how the specification and proliferative expansion of the anteroposterior and proximodistal limb bud axes are coordinately controlled in time and space.
Assuntos
Botões de Extremidades/embriologia , Organogênese , Animais , Humanos , Botões de Extremidades/metabolismo , Camundongos , Modelos Biológicos , Transdução de SinaisRESUMO
The essential roles of SHH in anteroposterior (AP) and AER-FGF signalling in proximodistal (PD) limb bud development are well understood. In addition, these morphoregulatory signals are key components of the self-regulatory SHH/GREM1/AER-FGF feedback signalling system that regulates distal progression of limb bud development. This study uncovers an additional signalling module required for coordinated progression of limb bud axis development. Transcriptome analysis using Shh-deficient mouse limb buds revealed that the expression of proximal genes was distally extended from early stages onwards, which pointed to a more prominent involvement of SHH in PD limb axis development. In particular, retinoic acid (RA) target genes were upregulated proximally, while the expression of the RA-inactivating Cyp26b1 enzyme was downregulated distally, pointing to increased RA activity in Shh-deficient mouse limb buds. Further genetic and molecular analysis established that Cyp26b1 expression is regulated by AER-FGF signalling. During initiation of limb bud outgrowth, the activation of Cyp26b1 expression creates a distal 'RA-free' domain, as indicated by complementary downregulation of a transcriptional sensor of RA activity. Subsequently, Cyp26b1 expression increases as a consequence of SHH-dependent upregulation of AER-FGF signalling. To better understand the underlying signalling interactions, computational simulations of the spatiotemporal expression patterns and interactions were generated. These simulations predicted the existence of an antagonistic AER-FGF/CYP26B1/RA signalling module, which was verified experimentally. In summary, SHH promotes distal progression of limb development by enhancing CYP26B1-mediated RA clearance as part of a signalling network linking the SHH/GREM1/AER-FGF feedback loop to the newly identified AER-FGF/CYP26B1/RA module.
Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Botões de Extremidades/embriologia , Botões de Extremidades/metabolismo , Tretinoína/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Ectoderma/embriologia , Ectoderma/metabolismo , Ativação Enzimática , Retroalimentação Fisiológica , Feminino , Fatores de Crescimento de Fibroblastos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/deficiência , Proteínas Hedgehog/genética , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Camundongos Mutantes , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Ácido Retinoico 4 Hidroxilase , Transdução de SinaisRESUMO
Endochondral bone development is orchestrated by the spatially and temporally coordinated differentiation of chondrocytes along the longitudinal axis of the cartilage anlage. Initially, the slowly proliferating, periarticular chondrocytes give rise to the pool of rapidly dividing columnar chondrocytes, whose expansion determines the length of the long bones. The Indian hedgehog (IHH) ligand regulates both the proliferation of columnar chondrocytes and their differentiation into post-mitotic hypertrophic chondrocytes in concert with GLI3, one of the main transcriptional effectors of HH signal transduction. In the absence of Hh signalling, the expression of Vlk (vertebrate lonesome kinase, also called Pkdcc) is increased. We now show that the shortening of limb long bones in Vlk-deficient mouse embryos is aggravated by additional inactivation of Gli3. Our analysis establishes that Vlk and Gli3 synergize to control the temporal kinetics of chondrocyte differentiation during long bone development. Whereas differentiation of limb mesenchymal progenitors into chondrocytes and the initial formation of the cartilage anlagen of the limb skeleton are not altered, Vlk and Gli3 are required for the temporally coordinated differentiation of periarticular into columnar and ultimately hypertrophic chondrocytes in long bones. In limbs lacking both Vlk and Gli3, the appearance of columnar and hypertrophic chondrocytes is severely delayed and zones of morphologically distinct chondrocytes are not established until E16.5. At the molecular level, these morphological alterations are reflected by delayed activation and lowered expression of Ihh, Pth1r and Col10a1 in long bone rudiments of double mutant limbs. In summary, our genetic analysis establishes that VLK plays a role in the IHH/GLI3 interactions and that Vlk and Gli3 cooperate to regulate long bone development by modulating the temporal kinetics of establishing columnar and hypertrophic chondrocyte domains.
Assuntos
Desenvolvimento Ósseo/genética , Osso e Ossos/metabolismo , Diferenciação Celular/genética , Condrócitos/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proteínas do Tecido Nervoso/genética , Proteínas Quinases/genética , Animais , Desenvolvimento Ósseo/fisiologia , Osso e Ossos/citologia , Osso e Ossos/embriologia , Cartilagem/metabolismo , Proliferação de Células , Condrócitos/citologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Proteína Relacionada ao Hormônio Paratireóideo/genética , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Proteínas Tirosina Quinases , Transdução de Sinais/fisiologia , Proteína Gli3 com Dedos de ZincoRESUMO
Tissue autofluorescence poses significant challenges for RNA and protein analysis using fluorescence-based techniques. Here, we present a protocol that combines oxidation-mediated autofluorescence reduction with detergent-based tissue permeabilization for whole-mount RNA-fluorescence in situ hybridization (FISH) on mouse embryonic limb buds. We describe the steps for embryo collection, fixation, photochemical bleaching, permeabilization, and RNA-FISH, followed by optical clearing of RNA-FISH and immunofluorescence samples for imaging. The protocol alleviates the need for digital image post-processing to remove autofluorescence and is applicable to other tissues, organs, and vertebrate embryos.
Assuntos
Embrião de Mamíferos , RNA , Animais , Camundongos , RNA/metabolismo , Hibridização in Situ Fluorescente/métodos , Embrião de Mamíferos/diagnóstico por imagem , Embrião de Mamíferos/metabolismo , ImunofluorescênciaRESUMO
A lingering question in developmental biology has centered on how transcription factors with widespread distribution in vertebrate embryos can perform tissue-specific functions. Here, using the murine hindlimb as a model, we investigate the elusive mechanisms whereby PBX TALE homeoproteins, viewed primarily as HOX cofactors, attain context-specific developmental roles despite ubiquitous presence in the embryo. We first demonstrate that mesenchymal-specific loss of PBX1/2 or the transcriptional regulator HAND2 generates similar limb phenotypes. By combining tissue-specific and temporally controlled mutagenesis with multi-omics approaches, we reconstruct a gene regulatory network (GRN) at organismal-level resolution that is collaboratively directed by PBX1/2 and HAND2 interactions in subsets of posterior hindlimb mesenchymal cells. Genome-wide profiling of PBX1 binding across multiple embryonic tissues further reveals that HAND2 interacts with subsets of PBX-bound regions to regulate limb-specific GRNs. Our research elucidates fundamental principles by which promiscuous transcription factors cooperate with cofactors that display domain-restricted localization to instruct tissue-specific developmental programs.
Assuntos
Redes Reguladoras de Genes , Fatores de Transcrição , Animais , Camundongos , Proteínas de Homeodomínio/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Mouse limb bud is a prime model to study the regulatory interactions that control vertebrate organogenesis. Major aspects of limb bud development are controlled by feedback loops that define a self-regulatory signalling system. The SHH/GREM1/AER-FGF feedback loop forms the core of this signalling system that operates between the posterior mesenchymal organiser and the ectodermal signalling centre. The BMP antagonist Gremlin1 (GREM1) is a critical node in this system, whose dynamic expression is controlled by BMP, SHH, and FGF signalling and key to normal progression of limb bud development. Previous analysis identified a distant cis-regulatory landscape within the neighbouring Formin1 (Fmn1) locus that is required for Grem1 expression, reminiscent of the genomic landscapes controlling HoxD and Shh expression in limb buds. RESULTS: Three highly conserved regions (HMCO1-3) were identified within the previously defined critical genomic region and tested for their ability to regulate Grem1 expression in mouse limb buds. Using a combination of BAC and conventional transgenic approaches, a 9 kb region located ~70 kb downstream of the Grem1 transcription unit was identified. This region, termed Grem1 Regulatory Sequence 1 (GRS1), is able to recapitulate major aspects of Grem1 expression, as it drives expression of a LacZ reporter into the posterior and, to a lesser extent, in the distal-anterior mesenchyme. Crossing the GRS1 transgene into embryos with alterations in the SHH and BMP pathways established that GRS1 depends on SHH and is modulated by BMP signalling, i.e. integrates inputs from these pathways. Chromatin immunoprecipitation revealed interaction of endogenous GLI3 proteins with the core cis-regulatory elements in the GRS1 region. As GLI3 is a mediator of SHH signal transduction, these results indicated that SHH directly controls Grem1 expression through the GRS1 region. Finally, all cis-regulatory regions within the Grem1 genomic landscape locate to the DNAse I hypersensitive sites identified in this genomic region by the ENCODE consortium. CONCLUSIONS: This study establishes that distant cis-regulatory regions scattered through a larger genomic landscape control the highly dynamic expression of Grem1, which is key to normal progression of mouse limb bud development.
Assuntos
Receptores de Proteínas Morfogenéticas Ósseas/genética , Proteínas Hedgehog/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Botões de Extremidades/embriologia , Sequências Reguladoras de Ácido Nucleico , Animais , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Sequência Conservada/genética , Citocinas , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Fatores de Transcrição Kruppel-Like/metabolismo , Botões de Extremidades/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Proteína Gli3 com Dedos de ZincoRESUMO
Proper limb development requires concerted communication between cells within the developing limb bud. Several molecules have been identified which contribute to the formation of a circuitry loop consisting in large part of secreted proteins. The intracellular actin nucleator, Formin 1 (Fmn1), has previously been implicated in limb development, but questions remain after the identification of a Gremlin transcriptional enhancer within the 3' end of the Fmn 1 locus. To resolve this issue, a knockout mouse devoid of Fmn1 protein was created and characterized. The mice exhibit a reduction of digit number to four, a deformed posterior metatarsal, phalangeal soft tissue fusion as well as the absence of a fibula to 100% penetrance in the FVB genetic background. Importantly, this mutant allele does not genetically disrupt the characterized Gremlin enhancer, and indeed Gremlin RNA expression is upregulated at the 35 somite stage of development. Our data reveal increased Bone Morphogenetic Protein (Bmp) activity in mice which carry a disruption in Fmn1, as evidenced by upregulation of Msx1 and a decrease in Fgf4 within the apical ectodermal ridge. Additionally, these studies show enhanced activity downstream of the Bmp receptor in cells where Fmn1 is perturbed, suggesting a role for Fmn1 in repression of Bmp signaling.
Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Fetais/genética , Inativação Gênica , Deformidades Congênitas dos Membros/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas Nucleares/genética , Transdução de Sinais , Regulação para Cima , Animais , Receptores de Proteínas Morfogenéticas Ósseas/genética , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Modelos Animais de Doenças , Extremidades/embriologia , Proteínas Fetais/metabolismo , Forminas , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Deformidades Congênitas dos Membros/embriologia , Deformidades Congênitas dos Membros/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Proteínas Nucleares/metabolismoRESUMO
Two regulatory signals play major roles in digit patterning during vertebrate limb development, the SHH morphogen and the BMP antagonist Gremlin1. Their dynamic expression in limb buds is controlled by distant cis-regulatory elements embedded in unrelated neighboring genes, which has confused identification of the primary cause of different types of congenital limb malformations affecting mice and humans. Comparative and functional genomics have uncovered the large and complex chromosomal landscapes that control Shh and Gremlin1 expression, identified the molecular cause of the congenital malformations and provided insights into limb evolution. While most of the transacting factors remain unknown, Hoxd proteins have been shown to bind to the far upstream Shh cis-regulatory elements and activate their expression in limb buds.
Assuntos
Cromossomos Humanos/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Deformidades Congênitas dos Membros/genética , Mutação/genética , Proteínas Hedgehog/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Deformidades Congênitas dos Membros/metabolismoRESUMO
Chromatin remodeling and genomic alterations impact spatio-temporal regulation of gene expression, which is central to embryonic development. The analysis of mouse and chicken limb development provides important insights into the morphoregulatory mechanisms, however little is known about the regulatory differences underlying their morphological divergence. Here, we identify the underlying shared and species-specific epigenomic and genomic variations. In mouse forelimb buds, we observe striking synchrony between the temporal dynamics of chromatin accessibility and gene expression, while their divergence in chicken wing buds uncovers species-specific regulatory heterochrony. In silico mapping of transcription factor binding sites and computational footprinting establishes the developmental time-restricted transcription factor-DNA interactions. Finally, the construction of target gene networks for HAND2 and GLI3 transcriptional regulators reveals both conserved and species-specific interactions. Our analysis reveals the impact of genome evolution on the regulatory interactions orchestrating vertebrate limb bud morphogenesis and provides a molecular framework for comparative Evo-Devo studies.
Assuntos
Padronização Corporal/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Botões de Extremidades/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Embrião de Galinha , Galinhas , Montagem e Desmontagem da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Simulação por Computador , Embrião de Mamíferos , Redes Reguladoras de Genes , Camundongos , Proteínas do Tecido Nervoso/metabolismo , RNA-Seq , Especificidade da Espécie , Proteína Gli3 com Dedos de Zinco/metabolismoRESUMO
Precise cis-regulatory control of gene expression is essential for normal embryogenesis and tissue development. The BMP antagonist Gremlin1 (Grem1) is a key node in the signalling system that coordinately controls limb bud development. Here, we use mouse reverse genetics to identify the enhancers in the Grem1 genomic landscape and the underlying cis-regulatory logics that orchestrate the spatio-temporal Grem1 expression dynamics during limb bud development. We establish that transcript levels are controlled in an additive manner while spatial regulation requires synergistic interactions among multiple enhancers. Disrupting these interactions shows that altered spatial regulation rather than reduced Grem1 transcript levels prefigures digit fusions and loss. Two of the enhancers are evolutionary ancient and highly conserved from basal fishes to mammals. Analysing these enhancers from different species reveal the substantial spatial plasticity in Grem1 regulation in tetrapods and basal fishes, which provides insights into the fin-to-limb transition and evolutionary diversification of pentadactyl limbs.
Assuntos
Nadadeiras de Animais/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Botões de Extremidades/metabolismo , Nadadeiras de Animais/citologia , Nadadeiras de Animais/crescimento & desenvolvimento , Animais , Sequência de Bases , Evolução Biológica , Boidae , Bovinos , Galinhas , Embrião de Mamíferos , Embrião não Mamífero , Iguanas , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Botões de Extremidades/citologia , Botões de Extremidades/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Coelhos , Genética Reversa/métodos , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Tubarões , Transdução de Sinais , SuínosRESUMO
BACKGROUND: Pax3 is a key upstream regulator of the onset of myogenesis, controlling progenitor cell survival and behaviour as well as entry into the myogenic programme. It functions in the dermomyotome of the somite from which skeletal muscle derives and in progenitor cell populations that migrate from the somite such as those of the limbs. Few Pax3 target genes have been identified. Identifying genes that lie genetically downstream of Pax3 is therefore an important endeavour in elucidating the myogenic gene regulatory network. RESULTS: We have undertaken a screen in the mouse embryo which employs a Pax3GFP allele that permits isolation of Pax3 expressing cells by flow cytometry and a Pax3PAX3-FKHR allele that encodes PAX3-FKHR in which the DNA binding domain of Pax3 is fused to the strong transcriptional activation domain of FKHR. This constitutes a gain of function allele that rescues the Pax3 mutant phenotype. Microarray comparisons were carried out between Pax3GFP/+ and Pax3GFP/PAX3-FKHR preparations from the hypaxial dermomyotome of somites at E9.5 and forelimb buds at E10.5. A further transcriptome comparison between Pax3-GFP positive and negative cells identified sequences specific to myogenic progenitors in the forelimb buds. Potential Pax3 targets, based on changes in transcript levels on the gain of function genetic background, were validated by analysis on loss or partial loss of function Pax3 mutant backgrounds. Sequences that are up- or down-regulated in the presence of PAX3-FKHR are classified as somite only, somite and limb or limb only. The latter should not contain sequences from Pax3 positive neural crest cells which do not invade the limbs. Verification by whole mount in situ hybridisation distinguishes myogenic markers. Presentation of potential Pax3 target genes focuses on signalling pathways and on transcriptional regulation. CONCLUSIONS: Pax3 orchestrates many of the signalling pathways implicated in the activation or repression of myogenesis by regulating effectors and also, notably, inhibitors of these pathways. Important transcriptional regulators of myogenesis are candidate Pax3 targets. Myogenic determination genes, such as Myf5 are controlled positively, whereas the effect of Pax3 on genes encoding inhibitors of myogenesis provides a potential brake on differentiation. In the progenitor cell population, Pax7 and also Hdac5 which is a potential repressor of Foxc2, are subject to positive control by Pax3.
Assuntos
Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica/métodos , Testes Genéticos , Desenvolvimento Muscular/genética , Fatores de Transcrição Box Pareados/metabolismo , Animais , Sequência de Bases , Sobrevivência Celular , Embrião de Mamíferos/citologia , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fator de Transcrição PAX3 , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Fatores de Transcrição Box Pareados/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Transcrição GênicaRESUMO
Vertebrate limb bud outgrowth and patterning is controlled by two instructive signaling centers, the apical ectodermal ridge (AER) and the polarizing region in the posterior limb bud mesenchyme. Molecular analysis of limb bud development has identified a self-regulatory signaling system that operates between the AER and mesenchyme and orchestrates the dynamic progression of limb bud outgrowth and patterning. The first focus of this review are the gene regulatory networks (GRNs) and interactions that control the positioning of the fore- and hindlimb fields along the primary body axis, establish the initial axis polarity and control the precise positioning of the signaling centers. These early processes are largely controlled by activating and inhibiting interactions among types of transcriptional regulators expressed in specific territories. The second focus deals with the dynamic interactions among the GRNs that control limb bud patterning and outgrowth by responding to inputs from the self-regulatory limb bud signaling system. The final part describes the GRN interactions regulating digit morphogenesis and the Turing-type system that controls the periodicity of the digit ray pattern. This review highlights the significant progress made toward an integrative analysis and understanding of the morpho-regulatory systems that orchestrate patterning and outgrowth of vertebrate limb buds in time and space.
Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Botões de Extremidades/metabolismo , Transdução de Sinais/genética , Vertebrados/genética , Animais , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Botões de Extremidades/embriologia , Modelos Genéticos , Vertebrados/classificação , Vertebrados/embriologiaRESUMO
Despite a common understanding that Gli TFs are utilized to convey a Hh morphogen gradient, genetic analyses suggest craniofacial development does not completely fit this paradigm. Using the mouse model (Mus musculus), we demonstrated that rather than being driven by a Hh threshold, robust Gli3 transcriptional activity during skeletal and glossal development required interaction with the basic helix-loop-helix TF Hand2. Not only did genetic and expression data support a co-factorial relationship, but genomic analysis revealed that Gli3 and Hand2 were enriched at regulatory elements for genes essential for mandibular patterning and development. Interestingly, motif analysis at sites co-occupied by Gli3 and Hand2 uncovered mandibular-specific, low-affinity, 'divergent' Gli-binding motifs (dGBMs). Functional validation revealed these dGBMs conveyed synergistic activation of Gli targets essential for mandibular patterning and development. In summary, this work elucidates a novel, sequence-dependent mechanism for Gli transcriptional activity within the craniofacial complex that is independent of a graded Hh signal.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Desenvolvimento Maxilofacial , Camundongos/genética , Proteínas do Tecido Nervoso/genética , Crânio/crescimento & desenvolvimento , Proteína Gli3 com Dedos de Zinco/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Feminino , Masculino , Desenvolvimento Maxilofacial/genética , Camundongos/metabolismo , Modelos Animais , Proteínas do Tecido Nervoso/metabolismo , Crânio/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismoRESUMO
Analysis of key regulators of vertebrate limb development has revealed that the cis-regulatory regions controlling their expression are often located several hundred kilobases upstream of the transcription units. These far up- or down-stream cis-regulatory regions tend to reside within rather large, functionally and structurally unrelated genes. Molecular analysis is beginning to reveal the complexity of these large genomic landscapes, which control the co-expression of clusters of diverse genes by this novel type of long-range and globally acting cis-regulatory region. An increasing number of spontaneous mutations in vertebrates, including humans, are being discovered inactivating or altering such global control regions. Thereby, the functions of a seemingly distant but essential gene are disrupted rather than the closest.
Assuntos
Padronização Corporal/genética , Elementos Facilitadores Genéticos/genética , Extremidades/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Animais , Extremidades/embriologia , Proteínas de Homeodomínio/genética , Humanos , Botões de Extremidades , Modelos Genéticos , Fatores de Transcrição/genéticaRESUMO
The optic fissure is a transient gap in the developing vertebrate eye, which must be closed as development proceeds. A persisting optic fissure, coloboma, is a major cause for blindness in children. Although many genes have been linked to coloboma, the process of optic fissure fusion is still little appreciated, especially on a molecular level. We identified a coloboma in mice with a targeted inactivation of transforming growth factor ß2 (TGFß2). Notably, here the optic fissure margins must have touched, however failed to fuse. Transcriptomic analyses indicated an effect on remodelling of the extracellular matrix (ECM) as an underlying mechanism. TGFß signalling is well known for its effect on ECM remodelling, but it is at the same time often inhibited by bone morphogenetic protein (BMP) signalling. Notably, we also identified two BMP antagonists among the downregulated genes. For further functional analyses we made use of zebrafish, in which we found TGFß ligands expressed in the developing eye, and the ligand binding receptor in the optic fissure margins where we also found active TGFß signalling and, notably, also gremlin 2b (grem2b) and follistatin a (fsta), homologues of the regulated BMP antagonists. We hypothesized that TGFß is locally inducing expression of BMP antagonists within the margins to relieve the inhibition from its regulatory capacity regarding ECM remodelling. We tested our hypothesis and found that induced BMP expression is sufficient to inhibit optic fissure fusion, resulting in coloboma. Our findings can likely be applied also to other fusion processes, especially when TGFß signalling or BMP antagonism is involved, as in fusion processes during orofacial development.