Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Invest New Drugs ; 42(3): 318-325, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38758478

RESUMO

Cancer is a disease caused by uncontrolled cell growth that is responsible for several deaths worldwide. Breast cancer is the most common type of cancer among women and is the leading cause of death. Chemotherapy is the most commonly used treatment for cancer; however, it often causes various side effects in patients. In this study, we evaluate the antineoplastic activity of a parent compound based on a combretastatin A4 analogue. We test the compound at 0.01 mg mL- 1, 0.1 mg mL- 1, 1.0 mg mL- 1, 10.0 mg mL- 1, 100.0 mg mL- 1, and 1,000.0 mg mL- 1. To assess molecular antineoplastic activity, we conduct in vitro tests to determine the viability of Ehrlich cells and the blood mononuclear fraction. We also analyze the cytotoxic behavior of the compound in the blood and blood smear. The results show that the molecule has a promising antineoplastic effect and crucial anticarcinogenic action. The toxicity of blood cells does not show statistically significant changes.


Assuntos
Estilbenos , Estilbenos/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Leucócitos Mononucleares/efeitos dos fármacos , Antineoplásicos/farmacologia , Humanos , Carcinoma de Ehrlich/tratamento farmacológico
2.
J Pept Sci ; 30(6): e3571, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38374800

RESUMO

The self-assembly in aqueous solution of three Fmoc-amino acids with hydrophobic (aliphatic or aromatic, alanine or phenylalanine) or hydrophilic cationic residues (arginine) is compared. The critical aggregation concentrations were obtained using intrinsic fluorescence or fluorescence probe measurements, and conformation was probed using circular dichroism spectroscopy. Self-assembled nanostructures were imaged using cryo-transmission electron microscopy and small-angle X-ray scattering (SAXS). Fmoc-Ala is found to form remarkable structures comprising extended fibril-like objects nucleating from spherical cores. In contrast, Fmoc-Arg self-assembles into plate-like crystals. Fmoc-Phe forms extended structures, in a mixture of straight and twisted fibrils coexisting with nanotapes. Spontaneous flow alignment of solutions of Fmoc-Phe assemblies is observed by SAXS. The cytocompatibility of the three Fmoc-amino acids was also compared via MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] mitochondrial activity assays. All three Fmoc-amino acids are cytocompatible with L929 fibroblasts at low concentration, and Fmoc-Arg shows cell viability up to comparatively high concentration (0.63 mM).


Assuntos
Aminoácidos , Fluorenos , Interações Hidrofóbicas e Hidrofílicas , Fluorenos/química , Aminoácidos/química , Animais , Camundongos , Sobrevivência Celular/efeitos dos fármacos
3.
Biochemistry ; 62(17): 2530-2540, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37540799

RESUMO

We investigate the physicochemical effects of pyroglutamination on the QHALTSV-NH2 peptide, a segment of cytosolic helix 8 of the human C-X-C chemokine G-protein-coupled receptor type 4 (CXCR4). This modification, resulting from the spontaneous conversion of glutamine to pyroglutamic acid, has significant impacts on the physicochemical features of peptides. Using a static approach, we compared the transformation in different conditions and experimentally found that the rate of product formation increases with temperature, underscoring the need for caution during laboratory experiments to prevent glutamine cyclization. Circular dichroism experiments revealed that the QHALTSV-NH2 segment plays a minor role in the structuration of H8 CXCR4; however, its pyroglutaminated analogue interacts differently with its chemical environment, showing increased susceptibility to solvent variations compared to the native form. The pyroglutaminated analogue exhibits altered behavior when interacting with lipid models, suggesting a significant impact on its interaction with cell membranes. A unique combination of atomic force microscopy and infrared nanospectroscopy revealed that pyroglutamination affects supramolecular self-assembly, leading to highly packed molecular arrangements and a crystalline structure. Moreover, the presence of pyroglumatic acid has been found to favor the formation of amyloidogenic aggregates. Our findings emphasize the importance of considering pyroglutamination in peptide synthesis and proteomics and its potential significance in amyloidosis.


Assuntos
Amiloidose , Glutamina , Humanos , Peptídeos , Quimiocinas/química , Membrana Celular/metabolismo , Dicroísmo Circular , Receptores CXCR4/metabolismo
4.
Toxicol Appl Pharmacol ; 475: 116630, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37473966

RESUMO

Gastric cancer (GC) is among the most-diagnosed and deadly malignancies worldwide. Deregulation in cellular bioenergetics is a hallmark of cancer. Based on the importance of metabolic reprogramming for the development and cancer progression, inhibitors of cell metabolism have been studied as potential candidates for chemotherapy in oncology. Mebendazole (MBZ), an antihelminthic approved by FDA, has shown antitumoral activity against cancer cell lines. However, its potential in the modulation of tumoral metabolism remains unclear. Results evidenced that the antitumoral and cytotoxic mechanism of MBZ in GC cells is related to the modulation of the mRNA expression of glycolic targets SLC2A1, HK1, GAPDH, and LDHA. Moreover, in silico analysis has shown that these genes are overexpressed in GC samples, and this increase in expression is related to decreased overall survival rates. Molecular docking revealed that MBZ modifies the protein structure of these targets, which may lead to changes in their protein function. In vitro studies also showed that MBZ induces alterations in glucose uptake, LDH's enzymatic activity, and ATP production. Furthermore, MBZ induced morphologic and intracellular alterations typical of the apoptotic cell death pathway. Thus, this data indicated that the cytotoxic mechanism of MBZ is related to an initial modulation of the tumoral metabolism in the GC cell line. Altogether, our results provide more evidence about the antitumoral mechanism of action of MBZ towards GC cells and reveal metabolic reprogramming as a potential area in the discovery of new pharmacological targets for GC chemotherapy.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Mebendazol/farmacologia , Mebendazol/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Glucose
5.
Biomacromolecules ; 24(11): 5403-5413, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37914531

RESUMO

There has been considerable interest in peptides in which the Fmoc (9-fluorenylmethoxycarbonyl) protecting group is retained at the N-terminus, since this bulky aromatic group can drive self-assembly, and Fmoc-peptides are biocompatible and have applications in cell culture biomaterials. Recently, analogues of new amino acids with 2,7-disulfo-9-fluorenylmethoxycarbonyl (Smoc) protecting groups have been developed for water-based peptide synthesis. Here, we report on the self-assembly and biocompatibility of Smoc-Ala, Smoc-Phe and Smoc-Arg as examples of Smoc conjugates to aliphatic, aromatic, and charged amino acids, respectively. Self-assembly occurs at concentrations above the critical aggregation concentration (CAC). Cryo-TEM imaging and SAXS reveal the presence of nanosheet, nanoribbon or nanotube structures, and spectroscopic methods (ThT fluorescence circular dichroism and FTIR) show the presence of ß-sheet secondary structure, although Smoc-Ala solutions contain significant unaggregated monomer content. Smoc shows self-fluorescence, which was used to determine CAC values of the Smoc-amino acids from fluorescence assays. Smoc fluorescence was also exploited in confocal microscopy imaging with fibroblast cells, which revealed its uptake into the cytoplasm. The biocompatibility of these Smoc-amino acids was found to be excellent with zero cytotoxicity (in fact increased metabolism) to fibroblasts at low concentration.


Assuntos
Aminoácidos , Água , Aminoácidos/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Peptídeos/química
6.
Soft Matter ; 19(26): 4869-4879, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37334565

RESUMO

Bradykinin (BK) is a peptide hormone that plays a crucial role in blood pressure control, regulates inflammation in the human body, and has recently been implicated in the pathophysiology of COVID-19. In this study, we report a strategy for fabricating highly ordered 1D nanostructures of BK using DNA fragments as a template for self-assembly. We have combined synchrotron small-angle X-ray scattering and high-resolution microscopy to provide insights into the nanoscale structure of BK-DNA complexes, unveiling the formation of ordered nanofibrils. Fluorescence assays hint that BK is more efficient at displacing minor-groove binders in comparison with base-intercalant dyes, thus, suggesting that interaction with DNA strands is mediated by electrostatic attraction between cationic groups at BK and the high negative electron density of minor-grooves. Our data also revealed an intriguing finding that BK-DNA complexes can induce a limited uptake of nucleotides by HEK-293t cells, which is a feature that has not been previously reported for BK. Moreover, we observed that the complexes retained the native bioactivity of BK, including the ability to modulate Ca2+ response into endothelial HUVEC cells. Overall, the findings presented here demonstrate a promising strategy for the fabrication of fibrillar structures of BK using DNA as a template, which keep bioactivity features of the native peptide and may have implications in the development of nanotherapeutics for hypertension and related disorders.


Assuntos
Bradicinina , COVID-19 , Humanos , Bradicinina/química , Bradicinina/farmacologia , Peptídeos , Transdução de Sinais , Células Endoteliais
7.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901707

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease (ND) and the leading cause of dementia. It is characterized by non-linear, genetic-driven pathophysiological dynamics with high heterogeneity in the biological alterations and the causes of the disease. One of the hallmarks of the AD is the progression of plaques of aggregated amyloid-ß (Aß) or neurofibrillary tangles of Tau. Currently there is no efficient treatment for the AD. Nevertheless, several breakthroughs in revealing the mechanisms behind progression of the AD have led to the discovery of possible therapeutic targets. Some of these include the reduction in inflammation in the brain, and, although highly debated, limiting of the aggregation of the Aß. In this work we show that similarly to the Neural cell adhesion molecule 1 (NCAM1) signal sequence, other Aß interacting protein sequences, especially derived from Transthyretin, can be used successfully to reduce or target the amyloid aggregation/aggregates in vitro. The modified signal peptides with cell-penetrating properties reduce the Aß aggregation and are predicted to have anti-inflammatory properties. Furthermore, we show that by expressing the Aß-EGFP fusion protein, we can efficiently assess the potential for reduction in aggregation, and the CPP properties of peptides in mammalian cells.


Assuntos
Doença de Alzheimer , Peptídeos Penetradores de Células , Doenças Neurodegenerativas , Animais , Humanos , Peptídeos Penetradores de Células/uso terapêutico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Sinais Direcionadores de Proteínas , Proteínas tau/metabolismo , Mamíferos/metabolismo
8.
Plant Mol Biol ; 109(6): 761-780, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35524936

RESUMO

Drought is one of the main environmental stresses that negatively impacts vegetative and reproductive yield. Water deficit responses are determined by the duration and intensity of the stress, which, together with plant genotype, will define the chances of plant survival. The metabolic adjustments in response to water deficit are complex and involve gene expression modulation regulated by DNA-binding proteins and epigenetic modifications. This last mechanism may also regulate the activity of transposable elements, which in turn impact the expression of nearby loci. Setaria italica plants submitted to five water deficit regimes were analyzed through a phenotypical approach, including growth, physiological, RNA-seq and sRNA-seq analyses. The results showed a progressive reduction in yield as a function of water deficit intensity associated with signaling pathway modulation and metabolic adjustments. We identified a group of loci that were consistently associated with drought responses, some of which were related to water deficit perception, signaling and regulation. Finally, an analysis of the transcriptome and sRNAome allowed us to identify genes putatively regulated by TE- and sRNA-related mechanisms and an intriguing positive correlation between transcript levels and sRNA accumulation in gene body regions. These findings shed light on the processes that allow S. italica to overcome drought and survive under water restrictive conditions.


Assuntos
Pequeno RNA não Traduzido , Setaria (Planta) , Adaptação Fisiológica/genética , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Pequeno RNA não Traduzido/metabolismo , Setaria (Planta)/genética , Estresse Fisiológico/genética , Água/metabolismo
9.
Toxicol Appl Pharmacol ; 456: 116256, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208702

RESUMO

Colorectal cancer (CRC) is estimated as the third most incident cancer and second in mortality worldwide. Moreover, CRC metastasis reduces patients' survival rates. Thus, the study and identification of new compounds with anticancer activity selectively to tumor cells are encouraged in the CRC treatment. Naphtoquinones are compounds with several pharmacologic activities, including antitumoral properties. Therefore, this study aimed to investigate the anticancer mechanism of synthetic 8-Hydroxy-2-(P-Nitrothiophenol)-1,4-Naphthoquinone (CNN16) in colon cancer cell line HCT-116. CNN16 showed an IC50 of 5.32 µM in HCT-116, and 9.36, 10.77, and 24.57 µM in the non-cancerous cells MRC-5, MNP-01, and PMBC, respectively, evaluated by the MTT assay. CNN16 showed an anticlonogenic effect in HCT-116 and induced cell fragmentation identified by flow cytometry analysis. Furthermore, we observed that CNN16 presented genotoxicity and induces reactive oxygen species (ROS) after 3 h of treatment visualized by alkaline comet assay and DCFH-DA dye fluorescence, respectively. Furthermore, CNN16 caused cellular membrane disruption, reduction in the mitochondrial membrane polarization, and the presence of apoptotic bodies and chromatin condensation was visualized by differential stained (HO/FD/PI) in fluorescent microscopy along with PARP1, TP53, BCL-2, and BAX analyzed by RT-qPCR. Results also evidenced inhibition in the migratory process analyzed by wound healing assay. Therefore, CNN16 can be considered as a potential new leader molecule for CRC treatment, although further studies are still necessary to comprehend the effects of CNN16 in in vivo models to evaluate the anti-migratory effect, and toxicology and assure compound safety and selectively.


Assuntos
Antineoplásicos , Neoplasias do Colo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular , Antineoplásicos/farmacologia , Apoptose , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Linhagem Celular , Dano ao DNA , Naftalenos/farmacologia , Linhagem Celular Tumoral , Potencial da Membrana Mitocondrial
10.
Langmuir ; 38(11): 3434-3445, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35274959

RESUMO

Peptide-based hydrogels have attracted much attention due to their extraordinary applications in biomedicine and offer an excellent mimic for the 3D microenvironment of the extracellular matrix. These hydrated matrices comprise fibrous networks held together by a delicate balance of intermolecular forces. Here, we investigate the hydrogelation behavior of a designed decapeptide containing a tetraleucine self-assembling backbone and fibronectin-related tripeptides near both ends of the strand. We have observed that this synthetic peptide can produce hydrogel matrices entrapping >99% wt/vol % water. Ultrastructural analyses combining atomic force microscopy, small-angle neutron scattering, and X-ray diffraction revealed that amyloid-like fibrils form cross-linked networks endowed with remarkable thermal stability, the structure of which is not disrupted up to temperatures >80 °C. We also examined the interaction of peptide hydrogels with either NIH3T3 mouse fibroblasts or HeLa cells and discovered that the matrices sustain cell viability and induce morphogenesis into grape-like cell spheroids. The results presented here show that this decapeptide is a remarkable building block to prepare highly stable scaffolds simultaneously endowed with high water retention capacity and the ability to instruct cell growth into tumor-like spheroids even in noncarcinoma lineages.


Assuntos
Hidrogéis , Nanoestruturas , Amiloide , Animais , Células HeLa , Humanos , Hidrogéis/química , Camundongos , Morfogênese , Células NIH 3T3 , Nanoestruturas/toxicidade , Peptídeos/química , Água
11.
Mol Divers ; 26(6): 3463-3483, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34982358

RESUMO

The development of new drugs requires a lot of time and high financial investments. It involves a research network in which there is the participation of several researchers from different areas. For a new drug to reach the market, thousands of substances must be evaluated. There are several tools for this and the use of suitable building blocks can facilitate the process by allowing a lead compound to have suitable parameters. These compounds are key structures containing special functional groups that also permit adequate synthetic transformations, leading to several structures of interest in a short period of time. In this review, the use of camphor nitroimine as a potential key building block is explored. Derived from camphor, an abundant natural product present in various plant species, this nitroimine has proved to be quite versatile, allowing the access to substances with miscellaneous biological activities, ligands to asymmetric catalysis, asymmetric oxidants, O-N transfer agents and other applications. Its easy conversion to camphecene and other derivatives is described, as well as their applications in medicinal chemistry. Druglikeness analyses were performed on these studied agents as well as on their bioactive derivatives in order to assess their use in the development of potential drugs.


Assuntos
Produtos Biológicos , Cânfora , Catálise
12.
Parasitol Res ; 121(9): 2697-2711, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35857093

RESUMO

Trichomoniasis is a great public health burden worldwide and the increase in treatment failures has led to a need for finding alternative molecules to treat this disease. In this study, we present in vitro and in silico analyses of two 2,8-bis(trifluoromethyl) quinolines (QDA-1 and QDA-2) against Trichomonas vaginalis. For in vitro trichomonacidal activity, up to seven different concentrations of these drugs were tested. Molecular docking, biochemical, and cytotoxicity analyses were performed to evaluate the selectivity profile. QDA-1 displayed a significant effect, completely reducing trophozoites viability at 160 µM, with an IC50 of 113.8 µM, while QDA-2 at the highest concentration reduced viability by 76.9%. QDA-1 completely inhibited T. vaginalis growth and increased reactive oxygen species production and lipid peroxidation after 24 h of treatment, but nitric oxide accumulation was not observed. In addition, molecular docking studies showed that QDA-1 has a favorable binding mode in the active site of the T. vaginalis enzymes purine nucleoside phosphorylase, lactate dehydrogenase, triosephosphate isomerase, and thioredoxin reductase. Moreover, QDA-1 presented a level of cytotoxicity by reducing 36.7% of Vero cells' viability at 200 µM with a CC50 of 247.4 µM and a modest selectivity index. In summary, the results revealed that QDA-1 had a significant anti-T. vaginalis activity. Although QDA-1 had detectable cytotoxicity, the concentration needed to eliminate T. vaginalis trophozoites is lower than the CC50 encouraging further studies of this compound as a trichomonacidal agent.


Assuntos
Quinolinas , Tricomoníase , Trichomonas vaginalis , Animais , Chlorocebus aethiops , Humanos , Simulação de Acoplamento Molecular , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Tricomoníase/tratamento farmacológico , Trofozoítos , Células Vero
13.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409190

RESUMO

The increasing numbers of cancer cases worldwide and the exceedingly high mortality rates of some tumor subtypes raise the question about if the current protocols for cancer management are effective and what has been done to improve upon oncologic patients' prognoses. The traditional chemo-immunotherapy options for cancer treatment focus on the use of cytotoxic agents that are able to overcome neoplastic clones' survival mechanisms and induce apoptosis, as well as on the ability to capacitate the host's immune system to hinder the continuous growth of malignant cells. The need to avert the highly toxic profiles of conventional chemo-immunotherapy and to overcome the emerging cases of tumor multidrug resistance has fueled a growing interest in the field of precision medicine and targeted molecular therapies in the last couple of decades, although relatively new alternatives in oncologic practices, the increased specificity, and the positive clinical outcomes achieved through targeted molecular therapies have already consolidated them as promising prospects for the future of cancer management. In recent years, the development and application of targeted drugs as tyrosine kinase inhibitors have enabled cancer treatment to enter the era of specificity. In addition, the combined use of targeted therapy, immunotherapy, and traditional chemotherapy has innovated the standard treatment for many malignancies, bringing new light to patients with recurrent tumors. This article comprises a series of clinical trials that, in the past 5 years, utilized kinase inhibitors (KIs) as a monotherapy or in combination with other cytotoxic agents to treat patients afflicted with solid tumors. The results, with varying degrees of efficacy, are reported.


Assuntos
Neoplasias , Citotoxinas/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia
14.
Int J Mol Sci ; 23(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897681

RESUMO

The multidrug resistance (MDR) phenotype is one of the major obstacles in the treatment of chronic myeloid leukemia (CML) in advantage stages such as blast crisis. In this scenario, more patients develop resistance mechanisms during the course of the disease, making tyrosine kinase inhibitors (TKIs) target therapies ineffective. Therefore, the aim of the study was to examine the pharmacological role of CNN1, a para-naphthoquinone, in a leukemia multidrug resistant cell line. First, the in vitro cytotoxic activity of Imatinib Mesylate (IM) in K-562 and FEPS cell lines was evaluated. Subsequently, membrane integrity and mitochondrial membrane potential assays were performed to assess the cytotoxic effects of CNN1 in K-562 and FEPS cell lines, followed by cell cycle, alkaline comet assay and annexin V-Alexa Fluor® 488/propidium iodide assays (Annexin/PI) using flow cytometry. RT-qPCR was used to evaluate the H2AFX gene expression. The results demonstrate that CNN1 was able to induce apoptosis, cell membrane rupture and mitochondrial membrane depolarization in leukemia cell lines. In addition, CNN1 also induced genotoxic effects and caused DNA fragmentation, cell cycle arrest at the G2/M phase in leukemia cells. No genotoxicity was observed on peripheral blood mononuclear cells (PBMC). Additionally, CNN1 increased mRNA levels of H2AFX. Therefore, CNN1 presented anticancer properties against leukemia multidrug resistant cell line being a potential anticancer agent for the treatment of resistant CML.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Naftoquinonas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mieloide/tratamento farmacológico , Leucócitos Mononucleares/metabolismo , Naftoquinonas/farmacologia , Regulação para Cima
15.
J Cell Biochem ; 122(10): 1376-1388, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34160883

RESUMO

Gastric cancer is one of the most common and deadly types of cancer in the world, and poor prognosis with treatment failure is widely reported in the literature. In this context, kinases have been considered a relevant choice for targeted therapy in gastric cancer. Here, we explore the antiproliferative and antimigratory effects of the AURKA inhibitor and the prognostic and therapeutic value as a biomarker of gastric cancer. A total of 145 kinase inhibitors were screened to evaluate the cytotoxic or cytostatic effects in the gastric cancer cell line. Using the Alamar Blue assay, flow cytometry, quantitative polymerase chain reaction, and observation of caspase 3/7 activity and cell migration, we investigated the antiproliferative, proapoptotic, and antimigratory effects of the AURKA inhibitor. Moreover, AURKA overexpression was evaluated in the gastric cell lines and the gastric tumor tissue. Out of the 145 inhibitors, two presented the highest antiproliferative effect. Both molecules can induce apoptosis by the caspases 3/7 pathway in addition to inhibiting cancer cell migration, mainly the AURKA inhibitor. Moreover, molecular docking analysis revealed that GW779439X interacts in the active site of the AURKA enzyme with similar energy as a well-described inhibitor. Our study identified AURKA overexpression in the gastric cancer cell line and gastric tumor tissue, revealing that its overexpression in patients with cancer is correlated with low survival. Therefore, it is feasible to suggest AURKA as a potential marker of gastric cancer, besides providing robust information for diagnosis and estimated survival of patients. AURKA can be considered a new molecular target used in the prognosis and therapy of gastric cancer.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Piridazinas/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Apoptose , Aurora Quinase A/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Prognóstico , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/patologia , Taxa de Sobrevida
16.
Biopolymers ; 112(7): e23432, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33982812

RESUMO

Efficient delivery of nanometric vectors complexed with nanoparticles at a target tissue without spreading to other tissues is one of the main challenges in gene therapy. One means to overcome this problem is to confine such vectors within microgels that can be placed in a target tissue to be released slowly and locally. Herein, a conventional optical microscope coupled to a common smartphone was employed to monitor the microfluidic production of monodisperse alginate microgels containing nanoparticles as a model for the encapsulation of vectors. Alginate microgels (1.2%) exhibited an average diameter of 125 ± 3 µm, which decreased to 106 ± 5 µm after encapsulating 30 nm fluorescent nanoparticles. The encapsulation efficiency was 70.9 ± 18.9%. In a 0.1 M NaCl solution, 55 ± 5% and 92 ± 4.7% of nanoparticles were released in 30 minutes and 48 hours, respectively. Microgel topography assessment by atomic force microscopy revealed that incorporation of nanoparticles into the alginate matrix changes the scaffold's interfacial morphology and induces crystallization with the appearance of oriented domains. The high encapsulation rate of nanoparticles, alongside their continuous release of nanoparticles over time, makes these microgels and the production unit a valuable system for vector encapsulation for gene therapy research.


Assuntos
Alginatos/química , Microfluídica/métodos , Microgéis/química , Nanopartículas/química , Ligação Competitiva , Ligantes , Microscopia de Força Atômica , Nanopartículas/metabolismo , Tamanho da Partícula
17.
Bioorg Chem ; 110: 104786, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33740676

RESUMO

Studies displaying the combination of mefloquine (MFL) with anti-tuberculosis (TB) substances are limited in the literature. In this work, the effect of MFL-association with two first-line anti-TB drugs and six fluoroquinolones was evaluated against Mycobacterium tuberculosis drug resistant strains. MFL showed synergistic interaction with isoniazid, pyrazinamide, and several fluoroquinolones, reaching fractional inhibitory concentration indexes (FICIs) ranging from 0.03 to 0.5. In order to better understand the observed results, two approaches have been explored: (i) spectroscopic responses attributed to the effect of MFL on physicochemical properties related to a liposomal membrane model composed by soybean asolectin; (ii) molecular dynamics (MD) simulation data regarding MFL interaction with a membrane model based on PIM2, a lipid constituent of the mycobacterial cell wall. FTIR and NMR data showed that MFL affects expressively the region between the phosphate and the first methylene groups of soybean asolectin membranes, disordering these regions. MD simulations results detected high MFL density in the glycolipid interface and showed that the drug increases the membrane lateral diffusion, enhancing its permeability. The obtained results suggest that synergistic activities related to MFL are attributed to its effect of lipid disorder and membrane permeability enhancement.


Assuntos
Antituberculosos/farmacologia , Mefloquina/farmacologia , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/síntese química , Antituberculosos/química , Relação Dose-Resposta a Droga , Espectroscopia de Ressonância Magnética , Mefloquina/síntese química , Mefloquina/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Isótopos de Fósforo , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade
18.
J Toxicol Environ Health A ; 84(18): 761-768, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34180377

RESUMO

Dipyrone or metamizole is one of the most frequently used analgesic worldwide. Despite its widespread use, this drug may exert genotoxic and cytotoxic effects on lymphocytes. Therefore, studies with therapeutic agents that may provide protection against these effects are important. The homeopathic compound Canova® (CA) appears to be a beneficial candidate for preventing DNA damage and cellular lethality, since this compound acts as an immunomodulator associated with cytoprotective actions. Hence, the aim of the present investigation was to determine the potential cytoprotective effects of CA using cell line VERO as a model. VERO cells were incubated with sodium dipyrone and subsequently subject to the comet, apoptosis and immunocytochemistry assays. Data demonstrated that sodium dipyrone induced an increase in DNA damage index (DI) employing the comet assay. However, when VERO cells were co-treated with CA at the three concentrations studied, a significant reduction in DI was observed, indicating an antigenotoxic effect attributed to CA. Further dipyrone induced an elevation in %apoptosis at 24 and 48 hr. However, when dipyrone was co-incubated with CA, a significant reduction in %apoptosis was noted at the three concentrations of CA employed. Results from immunocytochemical analysis showed a rise in the expression of caspase 8 and cytochrome C when cells were exposed to dipyrone. In contrast, co-treatment of dipyrone and CA significantly reduced the effect of dipyrone. Therefore, evidence indicated that CA acted as an anticytotoxic and antigenotoxic agent counteracting damage induced by dipyrone.


Assuntos
Venenos de Crotalídeos/farmacologia , Crioprotetores/farmacologia , Dipirona/efeitos adversos , Materia Medica/farmacologia , Extratos Vegetais/farmacologia , Animais , Apoptose , Chlorocebus aethiops , Ensaio Cometa , Imuno-Histoquímica , Células Vero
19.
20.
Mediators Inflamm ; 2019: 2536781, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31320834

RESUMO

Helicobacter pylori (H. pylori) is a highly prevalent bacterium in our environment, directly involved in various upper digestive tract diseases, such as gastritis, peptic ulcer, and gastric cancer. Several molecules activating the immune system have been reported to be involved in containing H. pylori infection. This study is aimed at analyzing the mRNA expression of the cytokines IFN-γ, IL-17, IL-10, TGF-ß, IL-6, IL-22, IL-23, and IL-33; transcription factors T-bet, RORC, and FOXP3; enzymes ARG1, ARG2, and NOS2; and neuropeptides VIP and TAC and their respective receptors VIPR1 and TACR1 in the stomach lining of patients with severe digestive disorders. One hundred and twenty six patients have been evaluated, presenting with symptoms in the upper digestive tract, with the clinical indication for an Upper Digestive Endoscopy exam. Two fragments of the mucosa of the gastric body and antrum have been collected for anatomopathological examination and to analyze the expression of enzymes, cytokines, and transcription factors using qPCR. Expression of the ARG1 gene was seen as significantly higher in the group of patients with chronic inactive gastritis than in the control group. Expression of the TGF-ß gene and its FOXP3 transcription factor was significantly higher in the group of chronic inactive gastritis patients than in the control. Expression of IFN-γ, IL-17, IL-10, and TGF-ß and the transcription factors, T-bet and RORC, in the presence or absence of H. pylori showed no significant difference. However, the expression of FOXP3 was significantly lower in H. pylori-positive patients than that in H. pylori-negative patients. ARG1 and Treg profile appeared to be modulating the inflammatory process, protecting patients from the tissue lesions with chronic inactive gastritis. Furthermore, we suggest that IL-33 may be a crucial mediator of the immune response against an infection, after gastric mucosal damage.


Assuntos
Arginase/metabolismo , Infecções por Helicobacter/imunologia , Interleucina-33/metabolismo , Linfócitos T Reguladores/imunologia , Adulto , Biópsia , Citocinas/metabolismo , Mucosa Esofágica/imunologia , Mucosa Esofágica/microbiologia , Feminino , Mucosa Gástrica/imunologia , Mucosa Gástrica/microbiologia , Gastrite/imunologia , Gastrite/microbiologia , Perfilação da Expressão Gênica , Helicobacter pylori , Humanos , Inflamação/imunologia , Masculino , Pessoa de Meia-Idade , Antro Pilórico/imunologia , Antro Pilórico/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA