Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Toxicol Environ Health A ; 87(17): 675-686, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38828979

RESUMO

The aviation sector is believed to be responsible for considerable environmental damage attributed to emission of a large number and amount of pollutants. Airports are often surrounded by forest fragments and humid areas that attract birds of prey and hence may potentially serve as useful bioindicators. The aim of the present study was to examine genotoxic potential in raptors exposed to airport pollution using the micronucleus (MN) test and morphological changes as evidenced by bilateral symmetry. This investigation was conducted at Salgado Filho International Airport of Porto Alegre - RS as well as in private and zoological breeding grounds. The presence of metals was measured in the blood cells of the collected birds. Seventeen birds (Caracara (Polyborus) plancus) were used in this study 11 from exposed and 6 from non-exposed group. The nuclear alterations clearly indicate that organisms exposed to airport pollution exhibited a significantly higher frequency of genetic damage compared to non-exposed birds. Further, manganese and chromium were detected exclusively in the blood of the exposed group. In contrast, the analysis of bilateral symmetry did not detect any significant morphologic differences between the two groups. Therefore, data indicate that blood genotoxic stress occurs in birds of prey living in civil aviation areas as evidenced by MN frequency increase and presence of manganese and chromium.


Assuntos
Aeroportos , Testes para Micronúcleos , Animais , Brasil , Monitoramento Ambiental , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Dano ao DNA , Núcleo Celular/efeitos dos fármacos , Aves Predatórias , Masculino
2.
Mutagenesis ; 38(2): 120-130, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36738258

RESUMO

Exposure of tobacco workers handling dried tobacco leaves has been linked to an increased risk of toxicity and respiratory illness due to the presence of nicotine and other chemicals. This study aimed to evaluate the DNA damage caused by the exposure of tobacco growers during the dry leaf classification process and the relation to cellular mechanisms. A total of 86 individuals participated in the study, divided into a group exposed to dry tobacco (n = 44) and a control group (n = 42). Genotoxicity was evaluated using the alkaline comet assay and lymphocyte micronucleus (MN) assay (CBMN-Cyt), and measurement of telomere length. The levels of oxidative and nitrosative stress were evaluated through the formation of thiobarbituric acid reactive species, and nitric oxide levels, respectively. The inorganic elements were measured in the samples using particle-induced X-ray emission method. The combination of variables was demonstrated through principal component analysis and the interactions were expanded through systems biology. Comet assay, MN, death cells, thiobarbituric acid reactive species, and nitrosative stress showed a significant increase for all exposed groups in relation to the control. Telomere length showed a significant decrease for exposed women and total exposed group in relation to men and control groups, respectively. Bromine (Br) and rubidium (Rb) in the exposed group presented higher levels than control groups. Correlations between nitrate and apoptosis; Br and MN and necrosis; and Rb and telomeres; besides age and DNA damage and death cells were observed. The systems biology analysis demonstrated that tobacco elements can increase the nuclear translocation of NFKB dimers inducing HDAC2 expression, which, associated with BRCA1 protein, can potentially repress transcription of genes that promote DNA repair. Dry tobacco workers exposed to dry leaves and their different agents showed DNA damage by different mechanisms, including redox imbalance.


Assuntos
Nicotiana , Exposição Ocupacional , Masculino , Humanos , Feminino , Nicotiana/efeitos adversos , Dano ao DNA , Ensaio Cometa , Exposição Ocupacional/efeitos adversos , Testes para Micronúcleos/métodos , Folhas de Planta
3.
Ecotoxicol Environ Saf ; 206: 111397, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007538

RESUMO

During the harvest period, tobacco workers are exposed to nicotine and it is known that absorption of the alkaloid via the leaves causes green tobacco sickness (GST). We investigated if GST and its symptoms are associated with DNA damage and alterations of the redox status. DNA damage was measured in lymphocytes of tobacco workers and controls (n = 40/group) in single cell gel electrophoresis assays. Exposure to nicotine was determined by plasma cotinine measurements, alterations of the redox status by quantification of the total antioxidant capacity (TEAC) and of thiobarbituric acid reactive substances (TBARS). The symptoms of GTS included nausea, abdominal cramps, headache, vomiting and dizziness, and 50% of the workers had more than one symptom. Cotinine levels were enhanced in the workers (111 ng/mL); furthermore, the extent of DNA damage was ca. 3-fold higher than in the controls. This effect was more pronounced in participants with GST compared to healthy nicotine exposed workers and increased in individuals with specific symptoms (range 22-36%). TBARS levels did not differ between workers and unexposed controls, while TEAC values were even increased (by 14.3%). Contact with nicotine present in tobacco leaves causes GTS and leads to damage of the DNA; this effect is more pronounced in workers with GTS symptoms and is associated with alterations of the redox status. Damage of the genetic material which was found in the workers may lead to adverse long-term effects that are caused by genomic instability such as cancer and accelerated ageing.


Assuntos
Doenças dos Trabalhadores Agrícolas/induzido quimicamente , Dano ao DNA , Fazendeiros , Nicotiana/crescimento & desenvolvimento , Nicotina/toxicidade , Exposição Ocupacional/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Adulto , Doenças dos Trabalhadores Agrícolas/genética , Doenças dos Trabalhadores Agrícolas/metabolismo , Brasil , Estudos de Casos e Controles , Cotinina/sangue , Feminino , Instabilidade Genômica/efeitos dos fármacos , Humanos , Masculino , Nicotina/metabolismo , Exposição Ocupacional/análise , Oxirredução , Estresse Oxidativo/genética , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Nicotiana/metabolismo , Adulto Jovem
4.
Ecology ; 98(6): 1729, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28317110

RESUMO

The data set provided here includes 8,320 frugivory interactions (records of pairwise interactions between plant and frugivore species) reported for the Atlantic Forest. The data set includes interactions between 331 vertebrate species (232 birds, 90 mammals, 5 fishes, 1 amphibian, and 3 reptiles) and 788 plant species. We also present information on traits directly related to the frugivory process (endozoochory), such as the size of fruits and seeds and the body mass and gape size of frugivores. Data were extracted from 166 published and unpublished sources spanning from 1961 to 2016. While this is probably the most comprehensive data set available for a tropical ecosystem, it is arguably taxonomically and geographically biased. The plant families better represented are Melastomataceae, Myrtaceae, Moraceae, Urticaceae, and Solanaceae. Myrsine coriacea, Alchornea glandulosa, Cecropia pachystachya, and Trema micrantha are the plant species with the most animal dispersers (83, 76, 76, and 74 species, respectively). Among the animal taxa, the highest number of interactions is reported for birds (3,883) followed by mammals (1,315). The woolly spider monkey or muriqui, Brachyteles arachnoides, and Rufous-bellied Thrush, Turdus rufiventris, are the frugivores with the most diverse fruit diets (137 and 121 plants species, respectively). The most important general patterns that we note are that larger seeded plant species (>12 mm) are mainly eaten by terrestrial mammals (rodents, ungulates, primates, and carnivores) and that birds are the main consumers of fruits with a high concentration of lipids. Our data set is geographically biased, with most interactions recorded for the southeast Atlantic Forest.


Assuntos
Comportamento Alimentar , Florestas , Fungos , Animais , Aves , Frutas , Herbivoria , Plantas
5.
An Acad Bras Cienc ; 88(1): 349-60, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26839999

RESUMO

Agricultural workers involved in the harvest of tobacco crops are regularly exposed to large quantities of pesticides. In order to determine how this exposure to pesticides induces genetic alterations in these workers, blood samples were obtained from 77 exposed individuals, as well as from 60 unexposed subjects. DNA damage was analyzed by the Comet assay and by the micronucleus (MN) test. The antioxidant profile was evaluated by activity of superoxide dismutase (SOD), and the polymorphism of gene PON1 was used as a susceptibility biomarker. The content of inorganic elements in the blood samples was determined by PIXE analysis. Our results demonstrated that the damage frequency, damage index, the MN frequency, and the SOD activity were significantly elevated in the exposed relative to the unexposed group. A modulation of the MN results for the PON1 gene was observed in the exposed group. The concentrations of inorganic elements in the exposed group were higher compared to those of the unexposed group. In this study, we observed that genetic damage, and change in oxidative balance were induced by the exposure of workers to complex mixtures of pesticides in the presence of inorganic compounds, whereby an influence of the genotype was evident.


Assuntos
Dano ao DNA/efeitos dos fármacos , Fazendeiros/estatística & dados numéricos , Exposição Ocupacional/análise , Praguicidas/toxicidade , Superóxido Dismutase/sangue , Adulto , Biomarcadores/sangue , Ensaio Cometa , Dano ao DNA/genética , Diagnóstico Precoce , Feminino , Predisposição Genética para Doença/genética , Genótipo , Humanos , Masculino , Testes para Micronúcleos , Pessoa de Meia-Idade , Polimorfismo Genético , Nicotiana
6.
BMC Plant Biol ; 15: 69, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25849288

RESUMO

BACKGROUND: Rootstocks play a major role in the tolerance of citrus plants to water deficit by controlling and adjusting the water supply to meet the transpiration demand of the shoots. Alterations in protein abundance in citrus roots are crucial for plant adaptation to water deficit. We performed two-dimensional electrophoresis (2-DE) separation followed by LC/MS/MS to assess the proteome responses of the roots of two citrus rootstocks, Rangpur lime (Citrus limonia Osbeck) and 'Sunki Maravilha' (Citrus sunki) mandarin, which show contrasting tolerances to water deficits at the physiological and molecular levels. RESULTS: Changes in the abundance of 36 and 38 proteins in Rangpur lime and 'Sunki Maravilha' mandarin, respectively, were observed via LC/MS/MS in response to water deficit. Multivariate principal component analysis (PCA) of the data revealed major changes in the protein profile of 'Sunki Maravilha' in response to water deficit. Additionally, proteomics and systems biology analyses allowed for the general elucidation of the major mechanisms associated with the differential responses to water deficit of both varieties. The defense mechanisms of Rangpur lime included changes in the metabolism of carbohydrates and amino acids as well as in the activation of reactive oxygen species (ROS) detoxification and in the levels of proteins involved in water stress defense. In contrast, the adaptation of 'Sunki Maravilha' to stress was aided by the activation of DNA repair and processing proteins. CONCLUSIONS: Our study reveals that the levels of a number of proteins involved in various cellular pathways are affected during water deficit in the roots of citrus plants. The results show that acclimatization to water deficit involves specific responses in Rangpur lime and 'Sunki Maravilha' mandarin. This study provides insights into the effects of drought on the abundance of proteins in the roots of two varieties of citrus rootstocks. In addition, this work allows for a better understanding of the molecular basis of the response to water deficit in citrus. Further analysis is needed to elucidate the behaviors of the key target proteins involved in this response.


Assuntos
Compostos de Cálcio/metabolismo , Óxidos/metabolismo , Proteínas de Plantas/metabolismo , Proteômica , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Desidratação , Secas , Eletroforese em Gel Bidimensional , Análise de Componente Principal , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas
7.
Mutat Res Genet Toxicol Environ Mutagen ; 758(1-2): 23-8, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24004879

RESUMO

Coal is an important fossil fuel used to generate energy. Coal dust is constituted primarily of hydrocarbons and metals. During coal extraction, large quantities of coal dust particles are emitted, contributing to environmental pollution. Coal miners are constantly exposed to coal dust and its derivatives. The goal of this study was to evaluate the potential genotoxic effects of coal and oxidative stress in individuals from Candiota who were exposed to coal as part of their occupation. The comet assay and micronucleus (MN) test were used to assess these effects. This study involved 128 male participants of whom 71 reported work that included exposure to coal (exposed group) and 57 reported working at different jobs (unexposed group). The exposed group had a significantly increased damage index and damage frequency, as assessed using the comet assay, and increased MN and nucleoplasmic bridge frequencies, as assessed using the MN assay, compared with unexposed individuals. Significant and positive correlations between MN frequencies in the lymphocytes and buccal cells of control and exposed individuals were observed. The exposed individuals presented lower average levels of thiobarbituric acid reactive substances (TBARS) and catalase activity (CAT), while the mean superoxide dismutase activity (SOD) levels were higher in this group. The exposed group also had higher hematocrit levels. No correlation between DNA damage and inorganic elements, as identified using PIXE, was found; however, there was a correlation between the damage index and zinc. The evidence that exposure to coal and its derivatives presents a genetic hazard demonstrates the need for protective measures and educational programs for coal miners.


Assuntos
Carvão Mineral , Linfócitos/efeitos dos fármacos , Exposição Ocupacional , Estresse Oxidativo , Minas de Carvão , Ensaio Cometa , Humanos , Linfócitos/metabolismo , Masculino
8.
Genet Mol Biol ; 36(2): 269-75, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23885210

RESUMO

Tobacco farmers are routinely exposed to complex mixtures of inorganic and organic chemicals present in tobacco leaves. In this study, we examined the genotoxicity of tobacco leaves in the snail Helix aspersa as a measure of the risk to human health. DNA damage was evaluated using the micronucleus test and the Comet assay and the concentration of cytochrome P450 enzymes was estimated. Two groups of snails were studied: one fed on tobacco leaves and one fed on lettuce (Lactuca sativa L) leaves (control group). All of the snails received leaves (tobacco and lettuce leaves were the only food provided) and water ad libitum. Hemolymph cells were collected after 0, 24, 48 and 72 h. The Comet assay and micronucleus test showed that exposure to tobacco leaves for different periods of time caused significant DNA damage. Inhibition of cytochrome P450 enzymes occurred only in the tobacco group. Chemical analysis indicated the presence of the alkaloid nicotine, coumarins, saponins, flavonoids and various metals. These results show that tobacco leaves are genotoxic in H. aspersa and inhibit cytochrome P450 activity, probably through the action of the complex chemical mixture present in the plant.

9.
Genet Mol Biol ; 35(4 (suppl)): 1060-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23413045

RESUMO

Our mutagenesis group has been studying with important economic drivers of our state, such as agriculture, the foot-wear and leather industry and open-cast coal mining. Working conditions in these sectors have potentially harmful to humans. The aim of these studies is to determine the health risk of workers by biomonitoring subjects exposed to genotoxic agents. The main results of our studies with vineyard farmers we observed a high rate of MN and DNA damage in individuals exposed to pesticides (p < 0.001). In addition, some effects of genetic polymorphisms in the modulation of MN results were observed in this group. Tobacco farmers were also evaluated at different crop times. The results showed a significant increase in the Damage index and frequency in tobacco farmers compared to the non-exposed group, for all crop times. The results for footwear and tannery workers showed a significant increase in the mean ID for the solvent-based adhesive (p < 0.001) group in comparison to the water-based adhesive group and control (p < 0.05). For open-cast coal mine workers, the EBCyt indicated a significant increase in nuclear bud frequency and cytokinetic defects in the exposed group compared to the non-exposed group (p < 0.0001). We were able to associate specific genetic susceptibility with each type of exposure and with the non-use or improper use of personal protection equipment and diet adequacy. These results show how important the continuous education of exposed workers is to minimizing the effect of the occupational exposure and the risk of disease associated with the work.

11.
Toxicol Res (Camb) ; 8(2): 277-286, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30997027

RESUMO

Zinc oxide (ZnO) NPs are being used worldwide in consumer products and industrial applications. Based on predefined pathways, this study synthesized and characterized the nanostructures of ZnO NPs. The genotoxic effects of these nanomaterials were evaluated using a short-term in vivo bioassay, the somatic mutation and recombination test (SMART) in Drosophila melanogaster. In addition, a systems biology approach was used to search for known and predicted interaction networks between ZnO and proteins. The results observed in this study after in vivo exposure indicate that ZnO NPs are genotoxic and that homologous recombination (HR) was the main mechanism inducing loss of heterozygosis in the somatic cells of D. melanogaster. The results of in silico analysis indicated that ZnO is associated with the nuclear factor-kappa-beta (NFKB) protein family. In accordance with this model, ZnO exposure decreases the levels of NFKB inhibitory protein in the cell, consequently increasing NFKB dimers in the nucleus and inducing DNA double strand breaks (DSB) repair via HR. This excess level of HR can be observed in the SMART results. Assessing the mutagenic/recombinagenic effect of nanomaterials is essential in the development of strategies to protect human and environmental integrity.

12.
Rev Sci Instrum ; 79(1): 016104, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18248076

RESUMO

This paper revisits the design of L and S band bridged loop-gap resonators (BLGRs) for electron paramagnetic resonance applications. A novel configuration is described and extensively characterized for resonance frequency and quality factor as a function of the geometrical parameters of the device. The obtained experimental results indicate higher values of the quality factor (Q) than previously reported in the literature, and the experimental analysis data should provide useful guidelines for BLGR design.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Transdutores , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Mutat Res Genet Toxicol Environ Mutagen ; 836(Pt B): 9-18, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30442351

RESUMO

Pesticides are one of the most frequently investigated chemical, due to their multiple uses in agricultural and public health areas. This study evaluates lymphocytes CBMN (cytokinesis-block micronucleus cytome assay), inflammatory markers, inorganic elements in blood samples, and the relationship of these parameters with XRCC1Arg194Trp, OGG1Ser326Cys and PON1Gln192Arg polymorphisms in a population of tobacco farmers. The study population comprised 129 agricultural workers exposed to pesticides and 91 nonexposed. Farmers had significantly increased NPB (nuclear plasmatic bridge), MN (micronucleus) and NBUD (nuclear bud) frequencies, as well as IL-6 (interleukin 6) and TNF-α (tumor necrosis factor alpha) serum levels, and decreased cytokines CD4+/CD8+ ratio. In the exposed group, XRCC1 Trp/- was correlated with decreased NDI (nuclear division index), and OGG1 Cys/- was associated with higher levels of NPB and decreased levels of IL-6. The combined effects of PON1 Arg/- and XRCC1 Arg/Arg were associated with increased NPB frequencies. In addition, the combination of PON1 Arg/- with XRCC1 Trp/- or OGG1 Cys/- influenced in increased levels of necrosis in farmers. Furthermore, tobacco farmers showed a positive correlation between TNF-α levels and NPB, CD4+/CD8+ ratio and NBUD; and IL-6 levels with both MN and NDI. The duration of years of work at tobacco fields was correlated positively with NBUD frequency. Sulfur, chlorine and potassium were found at increased levels in the exposed group when compared to the nonexposed one. These findings provide evidence that tobacco farmers' exposure have increased DNA damage and alter the immune system's response, and that XRCC1 and OGG1 polymorphisms could influence both biomarkers results.


Assuntos
Arildialquilfosfatase/genética , Dano ao DNA , DNA Glicosilases/genética , Mediadores da Inflamação/sangue , Nicotiana/efeitos adversos , Polimorfismo Genético , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Adulto , Estudos de Casos e Controles , Fazendeiros/estatística & dados numéricos , Feminino , Humanos , Interleucina-6/sangue , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Linfócitos/patologia , Masculino , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Fator de Necrose Tumoral alfa/sangue
14.
Int J Occup Environ Health ; 23(4): 311-318, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-30052162

RESUMO

BACKGROUND: Genetic damage may occur spontaneously under normal metabolic circumstances, inadequate intake of nutrients, and excessive exposure to environmental mutagens. OBJECTIVES: To evaluate the influence of the intake of micronutrients vitamin B12, vitamin B6, and folate and of the polymorphism methylenetetrahydrofolate reductase (MTHFR) C677T on the induction of DNA damage in tobacco farmers. METHODS: The study involved 66 men and 44 women engaged in tobacco cultivation in the region of Venâncio Aires (Rio Grande do Sul state, Brazil). Peripheral blood samples were collected to analyze DNA damage using the Comet assay, the micronucleus (MN) test and MTHFR C677T polymorphism. Dietary intake was evaluated based on the mean values obtained from three 24-h diet recall questionnaires, and nutrient intake data were computerized and estimated in the Food Processor SQL 10.9 program. The statistical tests used to generate the stated results were Kruskal-Wallis test, Exact Fisher's test, and multivariate linear regression analysis. RESULTS: DNA damage was significantly higher in individuals who had an inadequate intake of folate, vitamin B12, and vitamin B6 (P < 0.01) assessed by Comet assay. In relation to MN test results, buccal cells showed MN frequency higher in individuals with inadequate intake of vitamin B6 (P < 0.01). No difference was observed in MN lymphocytes frequency. No significant association was detected between MTHFR C677T polymorphism and DNA damage in tobacco farmers. CONCLUSION: Our results suggest that folate, vitamin B12, and vitamin B6 deficiency may be associated with genotoxic effect in individuals exposed to pesticides.


Assuntos
Dano ao DNA , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Micronutrientes/metabolismo , Exposição Ocupacional , Polimorfismo Genético , Complexo Vitamínico B/metabolismo , Adulto , Brasil , Fazendeiros/estatística & dados numéricos , Feminino , Ácido Fólico/metabolismo , Humanos , Masculino , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Pessoa de Meia-Idade , Praguicidas/análise , Nicotiana , Vitamina B 12/metabolismo , Vitamina B 6/metabolismo
15.
Chemosphere ; 146: 396-404, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26741544

RESUMO

The entire process of power generation, extraction, processing and use of coal strongly impact water resources, soil, air quality and biota leads to changes in the fauna and flora. Pollutants generated by coal burning have been contaminating plants that grow in area impacted by airborne pollution with high metal contents. Baccharis trimera is popularly consumed as tea, and is widely developed in Candiota (Brazil), one of the most important coal burning regions of the Brazil. This study aims to investigate the phytochemical profile, in vivo genotoxic and mutagenic potential of extracts of B. trimera collected from an exposed region to pollutants generated by coal burning (Candiota City) and other unexposed region (Bagé City), using the Comet assay and micronucleus test in mice and the Salmonella/microsome short-term assay. The HPLC analyses indicated higher levels of flavonoids and phenolic acids for B. trimera aqueous extract from Bagé and absence of polycyclic aromatic hydrocarbons for both extracts. The presence of toxic elements such as cobalt, nickel and manganese was statistically superior in the extract from Candiota. For the Comet assay and micronucleus test, the mice were treated with Candiota and Bagé B. trimera aqueous extracts (500-2000 mg/kg). Significant genotoxicity was observed at higher doses treated with B. trimera aqueous extract from Candiota in liver and peripheral blood cells. Micronuclei were not observed but the results of the Salmonella/microsome short-term assay showed a significant increase in TA98 revertants for B. trimera aqueous extract from Candiota. The extract of B. trimera from Candiota bioacumulated higher levels of trace elements which were associated with the genotoxic effects detected in liver and peripheral blood cells.


Assuntos
Baccharis , Poluentes Ambientais/toxicidade , Metais Pesados/toxicidade , Mutagênicos/toxicidade , Extratos Vegetais/toxicidade , Animais , Brasil , Cromatografia Líquida de Alta Pressão , Carvão Mineral , Ensaio Cometa , Poluentes Ambientais/análise , Feminino , Fígado/efeitos dos fármacos , Masculino , Metais Pesados/análise , Camundongos , Testes para Micronúcleos , Mutagênicos/análise , Extratos Vegetais/química , Salmonella/efeitos dos fármacos , Salmonella/genética
16.
Chemosphere ; 164: 134-141, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27588572

RESUMO

Pollution of aquatic ecosystems is associated with the discharge of mostly industrial and urban effluents, which may cause loss of biodiversity and damage to public health. This study aims to evaluate the toxicity and mutagenicity of water samples collected in the Corrente River, a major waterway in the river basin district of Pedro II, Piauí (Brazil). This river is exposed to intense anthropogenic influence from urban, automotive mechanical and family farm waste, and it is used as the main source of water supply by the population. Water samples were collected during the rainy and dry seasons, at four sites in the Corrente River, and evaluated by physicochemical, microbiological and inorganic elements analyses. The samples were evaluated for mutagenicity using the Allium cepa test (toxicity, chromosomal aberration and micronucleus tests) and fish (Tilapia rendalli and Hoplias malabaricus). The physicochemical, microbiological and inorganic results show a large contribution to the pollution loads at collection points in the town of Pedro II, demonstrating the influence of urban pollution. The Al, Si, Ti, Cr, Ni and Cu contents were determined by PIXE. These same Corrente River water samples demonstrated mutagenic effect for A. cepa and fish, as well as toxicity in the A. cepa test. The observations of mutagenic effect may suggest that the complex mixture of agents is comprised of both clastogenic and aneugenic agents. This study also showed the need for constant monitoring in places with environmental degradation caused by urban sewage discharges.


Assuntos
Caraciformes/metabolismo , Ciclídeos/metabolismo , Cebolas/efeitos dos fármacos , Rios/química , Poluentes Químicos da Água/toxicidade , Animais , Brasil , Água Doce/análise , Testes para Micronúcleos/veterinária , Testes de Mutagenicidade , Estações do Ano , Testes de Toxicidade
17.
Sci Total Environ ; 490: 334-41, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24867698

RESUMO

Agricultural workers engaged in tobacco cultivation are constantly exposed to large amounts of pesticides as well as to the nicotine present in raw tobacco leaves. Pesticides have been considered potential chemical mutagens: experimental data revealed that various agrochemicals possess mutagenic properties. Studies have affirmed that nicotine absorbed through the skin results in the characteristic green tobacco sickness (GTS), an occupational illness reported by tobacco workers. This study sought to determine genotoxic effects in farmers occupationally exposed to agrochemicals and nicotine. Peripheral blood samples were collected from 30 agricultural workers, at different crop times (off-season, during pesticides application and leaf harvest), and 30 were non-exposed. We obtained data on DNA damage detected by the Comet assay and Micronucleus test as biomarker of occupational exposure and effect. The serum cholinesterase level, which in general present relation with exposition to organophosphates and carbamates, as well as serum cotinine level, which is a metabolite of nicotine, were also evaluated. The results showed a significant increase in Damage index and frequency in tobacco farmers compared to the non-exposed group, for all different crop times; and a significant increase in micronucleated cells in the off-season group. No correlation was found between age and exposure time in relation to biomarker tests. The DNA damage was greater in males than in females, but with a significant difference only in off-season group. No difference, in cholinesterase activity, was seen among the group of farmers and non-exposed group. Elevated level of cotinine was observed in leaf harvest group. This investigation suggests increased DNA damage in all tobacco crop stages, calling attention to the significant increase during the off-season and tobacco leaf harvest.


Assuntos
Agricultura , Agroquímicos/toxicidade , Biomarcadores/sangue , Mutagênicos/toxicidade , Nicotiana , Exposição Ocupacional/estatística & dados numéricos , Agroquímicos/metabolismo , Ensaio Cometa , Cotinina , Dano ao DNA , Feminino , Humanos , Masculino , Testes para Micronúcleos , Pessoa de Meia-Idade , Mutagênicos/metabolismo , Nicotina , Praguicidas/sangue , Praguicidas/toxicidade
18.
Environ Mol Mutagen ; 54(1): 65-71, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23055270

RESUMO

Coal is the largest fossil fuel source used for the generation of energy. However, coal extraction and its use constitute important pollution factors; thus, risk characterization and estimation are extremely important for the safety of coal workers and the environment. Candiota is located to the southeast of the state of Rio Grande do Sul and has the largest coal reserves in Brazil, and the largest thermal power complex in the state. In the open-cast mines, the coal miners are constantly exposed to coal dust. The human buccal micronucleus cytome (BMCyt) assay has been used widely to investigate biomarkers for DNA damage, cell death, and basal cell frequency in buccal cells. The aim of this study was to assess whether prolonged exposure to coal dust could lead to an increase in genomic instability, cell death, and frequency of basal cells using the BMCyt assay. In the analysis of epithelial cells, the exposed group (n = 41) presented with a significantly higher frequency of basal cells, micronuclei in basal and differentiated cells, and binucleated cells compared to the non-exposed group (n = 29). The exposed group showed a significantly lower frequency of condensed chromatin cells than the non-exposed group. However, we found no correlation between DNA damage and metal concentration in the blood of mine workers. DNA damage observed in the mine workers may be a consequence of oxidative damage resulting from exposure to coal residue mixtures. In addition, our findings confirm that the BMCyt assay can be used to identify occupational risk.


Assuntos
Minas de Carvão , Dano ao DNA , Testes para Micronúcleos/métodos , Mucosa Bucal/citologia , Exposição Ocupacional/análise , Adulto , Brasil , Morte Celular , Poeira , Instabilidade Genômica , Humanos , Masculino , Metais/sangue , Pessoa de Meia-Idade , Solo/análise , Fatores de Tempo
19.
J Agric Food Chem ; 58(17): 9868-74, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20684553

RESUMO

Tobacco farmers are routinely exposed to complex mixtures of the compounds present in tobacco leaves, including organic and inorganic pesticides. Penetration through skin is the most significant route of uptake in occupational exposure to chemicals, including dust and liquids containing toxic and carcinogenic substances. This study evaluates the genotoxic effect of tobacco leaves with and without dermal exposure to flumetralin in Mus musculus, determining cell damage by the micronucleus test and the Comet assay as well as antioxidant enzyme activities and hematologic parameters. Nicotine was used as positive control. Blood samples were collected for 0, 3, 24 and 48 h exposure periods, and DNA damage by Comet assay and micronucleus test was evaluated for all these periods. Bone marrow and liver cells were also evaluated for the 48 h exposure period. Significant differences between Comet assay results in blood cells from animals exposed to tobacco leaves with and without pesticide were found in 24 and 48 h exposure periods in relation to negative control. Bone marrow cells from the group exposed to leaves with pesticide (48 h) also demonstrated significant increase in DNA damage. Concerning the micronucleus test, only animals exposed to tobacco leaves without pesticide (24 h) showed increase in frequency of micronuclei when compared to the negative control. Oxidative stress activities also were demonstrated for different groups. The results demonstrate the injury effect caused by tobacco leaves in different Mus musculus tissues, suggesting that the effects of dermal exposure to tobacco leaves are caused by complex mixtures present in the plant, but mainly by nicotine.


Assuntos
Nicotiana , Folhas de Planta , Pele , Animais , Ensaio Cometa , Humanos , Camundongos , Exposição Ocupacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA