Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(1): 102, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38158434

RESUMO

Planted forest soils can have great potential for CO2-C sequestration, mainly due to belowground C inputs, which impact deep soil C (DSC) accumulation. However, there are still gaps in understanding the CO2 emission dynamics in eucalypt plantations. Therefore, we used isotopic techniques to investigate the dynamics of the soil surface CO2-C flux and CO2-C concentration with depth for a eucalypt plantation influenced by different C inputs (above- and belowground). The gas evaluations were carried in depth the root to valuation of root priming effect (RPE) was calculated. In addition, measurements of the plant (C-fine root and C-litterfall) and soil (total organic carbon - TOC, total nitrogen - TN, soil moisture - SM, and soil temperature - ST) were performed. After planting the eucalypt trees, there was an increase in the soil surface CO2-C flux with plant growth. Root growth contributed greatly to the soil surface CO2-C flux, promoting greater surface RPE over time. In comparison to the other factors, SM had a greater influence on litterfall decomposition and root respiration. It was not possible to detect losses in TOC and TN in the different soil layers for the 31-month-old eucalypt. However, the 40-month-old eucalypt showed a positive RPE with depth, indicating possible replacement of DSC ("old C") by rhizodeposition-C ("new C") in the soil. Thus, in eucalyptus plantations, aboveground plant growth influences CO2 emissions on the soil surface, while root growth and activity influence C in deeper soil layers. This information indicates the need for future changes in forest management, with a view to reducing CO2 emissions.


Assuntos
Dióxido de Carbono , Solo , Dióxido de Carbono/análise , Monitoramento Ambiental , Florestas , Árvores , Carbono/análise
2.
Environ Monit Assess ; 195(1): 129, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36409399

RESUMO

This study is aimed at evaluating C and N stocks in fractions of soil organic matter (SOM) in an area of bauxite mining under recovery with tree species. We have analyzed the long-term recovery of C and N stocks of organic matter fractions from five types of forest cover (Eucalyptus, Anadenanthera peregrina, mixed plantation of 16 native species, a mined area without vegetation cover as a control site, and a natural forest cover as a reference site). The total organic C (TOC) and N (TN) stocks and also organic matter fractions, particulate organic matter (POM), mineral-associated organic matter (MAOM), microbial biomass (MB), and labile C (LC), were determined, as well as the C/N ratio and the carbon management index (CMI). Although the stocks of TOC and LC, CMI, and MB did not differ between the types of forest cover in the 0-60 cm layer, they were lower than the values in the native forest. Forest cover increases the stocks of TOC, LC, MB, and CMI in the area of bauxite mining compared to the control site. In addition, we found that the TOC C and TN stocks and also SOM fractions (LC, C-MAOM, C-POM, N-MAOM, and N-POM) are positively correlated (r ≥ 0.71 for all cases) with volume of roots larger than 2 mm. Therefore, Eucalyptus, A. peregrina, and a mixed of 16 native trees contribute for restoring stocks of soil C and N following bauxite mining in the Brazilian Atlantic Forest.


Assuntos
Óxido de Alumínio , Eucalyptus , Biomassa , Monitoramento Ambiental , Florestas , Solo , Carbono/análise , Árvores
3.
Appl Environ Microbiol ; 79(16): 4906-13, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23770895

RESUMO

The simultaneous release of various chemical elements with inhibitory potential for phosphate solubilization from rock phosphate (RP) was studied in this work. Al, B, Ba, Ca, F, Fe, Mn, Mo, Na, Ni, Pb, Rb, Si, Sr, V, Zn, and Zr were released concomitantly with P during the solubilization of Araxá RP (Brazil), but only F showed inhibitory effects on the process at the concentrations detected in the growth medium. Besides P solubilization, fluoride decreased fungal growth, citric acid production, and medium acidification by Aspergillus niger. At the maximum concentration found during Araxá RP solubilization (22.9 mg F(-) per liter), fluoride decreased P solubilization by 55%. These findings show that fluoride negatively affects RP solubilization by A. niger through its inhibitory action on the fungal metabolism. Given that fluoride is a common component of RPs, the data presented here suggest that most of the microbial RP solubilization systems studied so far were probably operated under suboptimal conditions.


Assuntos
Aspergillus niger/metabolismo , Fosfatos/metabolismo , Brasil , Fluoretos/metabolismo , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Microbiologia do Solo , Solubilidade , Espectrofotometria Atômica
4.
Chemosphere ; 119: 504-514, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25112576

RESUMO

Phosphorus (P) K-edge XANES and Fe K-edge EXAFS spectroscopies along with sequential P chemical fractionation and desorption kinetics experiments, were employed to provide micro- and macro-scale information on the long-term fate of manure application on the solid-state speciation, kinetics and distribution of P in highly weathered agricultural soils of southern Brazil. Soil test P values ranged from 7.3 up to 16.5 times as much higher than the reference soil. A sharp increase in amorphous Fe and Al amounts were observed as an effect of the consecutive application of manures. Whereas our results showed that the P sorption capacity of some manured soils was not significantly affected, P risk assessment indices indicated that P losses should be expected, likely due to the excessive manure rates applied to the soils. The much higher contents of amorphous Fe and Al (hydr)oxides (55% and 80% increase with respect to the reference soil, respectively) in manured soils seem to have counterbalanced the inhibiting effect of soil organic matter on P sorption by creating additional P sorption sites. Accordingly, the newly created P sorbing surfaces were important to prevent an even larger P loss potential. Phosphorus K-edge XANES lent complimentary hints on the loss of crystallinity and transformation of originally present Fe-P minerals into poorly crystalline ones as an effect of manuring, whereas Fe K-edge EXAFS provided insights into the structural changes underwent in the soils upon manure application and soil management.


Assuntos
Esterco/análise , Fósforo/química , Solo/química , Agricultura/métodos , Brasil , Cinética , Espectroscopia por Absorção de Raios X
5.
Microb Biotechnol ; 8(6): 930-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26112323

RESUMO

A biotechnological strategy for the production of an alternative P fertilizer is described in this work. The fertilizer was produced through rock phosphate (RP) solubilization by Aspergillus niger in a solid-state fermentation (SSF) with sugarcane bagasse as substrate. SSF conditions were optimized by the surface response methodology after an initial screening of factors with significant effect on RP solubilization. The optimized levels of the factors were 865 mg of biochar, 250 mg of RP, 270 mg of sucrose and 6.2 ml of water per gram of bagasse. At this optimal setting, 8.6 mg of water-soluble P per gram of bagasse was achieved, representing an increase of 2.4 times over the non-optimized condition. The optimized SSF product was partially incinerated at 350°C (SB-350) and 500°C (SB-500) to reduce its volume and, consequently, increase P concentration. The post-processed formulations of the SSF product were evaluated in a soil-plant experiment. The formulations SB-350 and SB-500 increased the growth and P uptake of common bean plants (Phaseolus vulgaris L.) when compared with the non-treated RP. Furthermore, these two formulations had a yield relative to triple superphosphate of 60% (on a dry mass basis). Besides increasing P concentration, incineration improved the SSF product performance probably by decreasing microbial immobilization of nutrients during the decomposition of the remaining SSF substrate. The process proposed is a promising alternative for the management of P fertilization since it enables the utilization of low-solubility RPs and relies on the use of inexpensive materials.


Assuntos
Aspergillus niger/metabolismo , Fertilizantes , Fosfatos/metabolismo , Aspergillus niger/crescimento & desenvolvimento , Celulose/metabolismo , Meios de Cultura/química , Fermentação , Phaseolus/crescimento & desenvolvimento , Saccharum/metabolismo , Temperatura
6.
PLoS One ; 8(7): e67685, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844062

RESUMO

Ectomycorrhizal fungi are ubiquitous in forest ecosystems, benefitting plants principally by increasing the uptake of water and nutrients such as calcium from the soil. Previous work has demonstrated accumulation of crystallites in eucalypt ectomycorrhizas, but detailed morphological and chemical characterization of these crystals has not been performed. In this work, cross sections of acetic acid-treated and cleared ectomycorrhizal fragments were visualized by polarized light microscopy to evaluate the location of crystals within cortical root cells. Ectomycorrhizal sections were also observed by scanning electron microscopy (SEM) coupled with energy dispersive x-ray (EDS) microprobe analysis. The predominant forms of crystals were crystal sand (granules) and concretions. Calcium, carbon and oxygen were detected by EDS as constituent elements and similar elemental profiles were observed between both crystal morphologies. All analyzed crystalline structures were characterized as calcium oxalate crystals. This is the first report of the stoichiometry and morphology of crystals occurring in eucalypt ectomycorrhizas in tropical soils. The data corroborates the role of ectomycorrhizae in the uptake and accumulation of calcium in the form of calcium oxalate crystals in hybrid eucalypt plants.


Assuntos
Oxalato de Cálcio/química , Eucalyptus/microbiologia , Micorrizas/química , Cristalização , Cristalografia por Raios X , Microscopia Eletrônica de Varredura , Microscopia de Polarização , Micorrizas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA