Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37511073

RESUMO

The endogenous estradiol derivative 2-Methoxyestradiol (2-ME) has shown good and wide anticancer activity but suffers from poor oral bioavailability and extensive metabolic conjugation. However, its sulfamoylated derivative, 2-methoxyestradiol-3,17-O,O-bis-sulfamate (STX140), has superior potential as a therapeutic agent, acts by disrupting microtubule polymerization, leading to cell cycle arrest and apoptosis in cancer cells and possesses much better pharmaceutical properties. This study investigated the antiproliferative and anti-invasive activities of STX140 in both SKMEL-28 naïve melanoma (SKMEL28-P) cells and resistant melanoma cells (SKMEL-28R). STX140 inhibited cell proliferation in the nanomolar range while having a less pronounced effect on human melanocytes. Additionally, STX140 induced cell cycle arrest in the G2/M phase and sub-G1, reduced migration, and clonogenic potential in monolayer models, and inhibited invasion in a 3D human skin model with melanoma cells. Furthermore, STX140 induced senescence features in melanoma and activated the senescence machinery by upregulating the expression of senescence genes and proteins related to senescence signaling. These findings suggest that STX140 may hold potential as a therapeutic agent for melanoma treatment.


Assuntos
Estrenos , Melanoma , Humanos , 2-Metoxiestradiol/farmacologia , Estrenos/farmacologia , Proliferação de Células , Melanoma/tratamento farmacológico , Linhagem Celular Tumoral , Apoptose
2.
Eur J Nutr ; 61(7): 3391-3406, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35508740

RESUMO

PURPOSE: Dietary protein deficiency is common in the elderly, compromising hematopoiesis and the immune response, and may cause a greater susceptibility to infections. Mesenchymal stem cells (MSCs) have immunomodulatory properties and are essential to hematopoiesis. Therefore, this study aimed to investigate, in an aging model subjected to malnutrition due a reduced protein intake, aspects related to the immunomodulatory capacity of MSCs. METHODS: Male C57BL/6 mice from young and elderly groups were fed with normoproteic or hypoproteic diets (12% and 2% of protein, respectively) and nutritional, biochemical and hematological parameters were evaluated. MSCs from bone marrow were isolated, characterized and their secretory parameters evaluated, along with gene expression. Additionally, the effects of aging and protein malnutrition on MSC immunomodulatory properties were assessed. RESULTS: Malnourished mice lost weight and demonstrated anemia, leukopenia, and bone marrow hypoplasia. MSCs from elderly animals from both groups showed reduced CD73 expression and higher senescence rate; also, the malnourished state affected CD73 expression in young animals. The production of IL-1ß and IL-6 by MSCs was affected by aging and malnutrition, but the IL-10 production not. Aging also increased the expression of NFκB, reducing the expression of STAT-3. However, MSCs from malnourished groups, regardless of age, showed decreased TGF-ß and PGE2 production. Evaluation of the immunomodulatory capacity of MSCs revealed that aging and malnutrition affected, mainly in lymphocytes, the production of IFN-γ and IL-10. CONCLUSION: Aging and reduced protein intake are factors that, alone or together, influence the immunomodulatory properties of MSCs and provide basic knowledge that can be further investigated to explore whether MSCs' therapeutic potential may be affected.


Assuntos
Células-Tronco Mesenquimais , Deficiência de Proteína , Envelhecimento , Animais , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Imunidade , Interleucina-10/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
3.
J Nutr Biochem ; 124: 109511, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37913969

RESUMO

Protein malnourishment (PM) is common among the elderly, but how aging and PM impact hematopoiesis is not fully understood. This study aimed to assess how aging and PM affect the hematopoietic regulatory function of bone marrow (BM) mesenchymal stem cells (MSCs). Young and aged male C57BL/6J mice were fed with normoproteic or hypoproteic diets and had their nutritional, biochemical, and hematological parameters evaluated. BM MSCs were characterized and had their secretome, gene expression, autophagy, reactive oxygen species production (ROS), and DNA double-stranded breaks evaluated. The modulation of hematopoiesis by MSCs was assayed using in vitro and in vivo models. Lastly, BM invasiveness and mice survival were evaluated after being challenged with leukemic cells of the C1498 cell line. Aging and PM alter biochemical parameters, changing the peripheral blood and BM immunophenotype. MSC autophagy was affected by aging and the frequencies for ROS and DNA double-stranded breaks. Regarding the MSCs' secretome, PM and aging affected CXCL12, IL-6, and IL-11 production. Aging and PM up-regulated Akt1 and PPAR-γ while down-regulating Cdh2 and Angpt-1 in MSCs. Aged MSCs increased C1498 cell proliferation while reducing their colony-forming potential. PM and aging lowered mice survival, and malnourishment accumulated C1498 cells at the BM. Finally, aged and/or PM MSCs up-regulated Sox2, Nanog, Pou5f1, and Akt1 expression while down-regulating Cdkn1a in C1498 cells. Together, aging and PM can induce cell-intrinsic shifts in BM MSCs, creating an environment that alters the regulation of hematopoietic populations and favoring the development of malignant cells.


Assuntos
Desnutrição , Células-Tronco Mesenquimais , Humanos , Idoso , Masculino , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Células da Medula Óssea/metabolismo , Camundongos Endogâmicos C57BL , Hematopoese , Células-Tronco Mesenquimais/metabolismo , Envelhecimento , Desnutrição/metabolismo , DNA/metabolismo
4.
Exp Gerontol ; 171: 112025, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36372284

RESUMO

Malnutrition is considered one of the most common problems in the elderly population worldwide and can significantly interfere in health evolution in these individuals, predisposing them to increased infection susceptibility. The immune response triggered by infections comprises several mechanisms, and macrophages play important roles in this response. This study aimed to evaluate mechanisms related to macrophage function in a model of protein malnutrition in the elderly. Two age groups (young: 3-5 months and elderly: 18-19 months) male C57BL/6NTac mice were subjected to protein malnutrition with a low-protein diet (2 %). The nutritional status, hemogram and number of peritoneal cells were affected by both age and nutritional status. Additionally, the spreading capacity as well as the phagocytic and fungicidal activity of peritoneal macrophages were affected by the nutritional status and age of the animal. Interestingly, the percentages of F4/80+/CD11b+ and CD86+ cells were reduced mostly in elderly animals, while the TLR-4+ population was more affected by nutritional status than by age. The production of pro-inflammatory cytokines such as TNF-α, IL-1α, and IL-6 was also influenced by nutritional status and/or by age, and malnourished animals of advanced age produced higher amounts of the anti-inflammatory cytokine IL-10. Furthermore, the phosphorylation ratio of the transcription factor NFκB (pNFκB/NFκB) was directly affected by the nutritional status, independently of age. Thus, these results allow us to conclude that aging and protein malnutrition compromise macrophage function, likely affecting their immune function, and in aged protein-malnourished animals, this impairment tends to be more pronounced.


Assuntos
Macrófagos Peritoneais , Desnutrição , Idoso , Humanos , Camundongos , Masculino , Animais , Macrófagos Peritoneais/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA