RESUMO
Acylhydrazones are still an important framework to the design of new bioactive compounds. As treatment of chronic pain represents a clinical challenge, we decided to modify the structure of LASSBio-1514 (1), previously described as anti-inflammatory and analgesic prototype. Applying the homologation as a strategy for molecular modification, we designed a series of cyclopentyl- (2a-e), cyclobutyl- (3a-e), and cyclopropylacylhydrazones (4a-e) that were synthetized and evaluated in murine models of inflammation and pain. A comparison of their in silico physicochemical and drug-like profile was conducted, as well as their anti-inflammatory and analgesic effect. Compounds 4a (LASSBio-1755) and 4e (LASSBio-1757) displayed excellent in silico drug-like profiles and were identified as new analgesic lead-candidates in acute and chronic model of pain, through oral administration.
Assuntos
Simulação por Computador , Desenho de Fármacos , Hidrazonas/síntese química , Hidrazonas/farmacologia , Preparações Farmacêuticas/síntese química , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Aspirina/farmacologia , Células CACO-2 , Humanos , Hidrazonas/química , Hiperalgesia/patologia , Indometacina/farmacologia , Masculino , Camundongos , Conformação Molecular , Peso Molecular , Preparações Farmacêuticas/química , Ratos WistarRESUMO
Gabapentin is an anticonvulsant drug that is also used for post-herpetic neuralgia and neuropathic pain. Recently, gabapentin showed anti-inflammatory effect. Nuclear factor kappa B (NFκB) is a regulator of the inflammatory process, and Peroxisome Proliferator-activated Receptor gamma (PPAR-gamma) is an important receptor involved in NFκB regulation. The aim of the present work was to study the potential role of PPAR-gamma receptor in gabapentin-mediated anti-inflammatory effects in a colitis experimental model. We induced colitis in rats using trinitrobenzenosulfonic acid and treated them with gabapentin and bisphenol A dicyldidyl ether (PPAR-gamma inhibitor). Macroscopic lesion scores, wet weight, histopathological analysis, mast cell count, myeloperoxidase, malondialdehyde acid, glutathione, nitrate/nitrite, and interleukin levels in the intestinal mucosa were determined. In addition, western blots were performed to determine the expression of Cyclooxygenase-2 (COX-2) and NFκB; Nitric Oxide Inducible Synthase (iNOS) and Interleukin 1 beta (IL-1ß) levels were also determined. Gabapentin was able to decrease all inflammatory parameters macroscopic and microscopic in addition to reducing markers of oxidative stress and cytokines such as IL-1ß and Tumor Necrosis Factor alpha (TNF-α) as well as enzymes inducible nitric oxide synthase and cyclooxygenase 2 and inflammatory genic regulator (NFκB). These effect attributed to gabapentin was observed to be lost in the presence of the specific inhibitor of PPAR-gamma. Gabapentin inhibits bowel inflammation by regulating mast cell signaling. Furthermore, it activates the PPAR-gamma receptor, which in turn inhibits the activation of NFκB, and consequently results in reduced activation of inflammatory genes involved in inflammatory bowel diseases.
Assuntos
Colite/tratamento farmacológico , Gabapentina/uso terapêutico , PPAR gama/efeitos dos fármacos , Animais , Compostos Benzidrílicos/uso terapêutico , Colite/induzido quimicamente , Colite/patologia , Citocinas/metabolismo , Glutationa/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Masculino , Malondialdeído/metabolismo , Mastócitos/efeitos dos fármacos , NF-kappa B/metabolismo , PPAR gama/antagonistas & inibidores , Peroxidase/metabolismo , Fenóis/uso terapêutico , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Ácido TrinitrobenzenossulfônicoRESUMO
The gastroprotective effects of N-acylarylhydrazone derivatives on ethanol-induced gastric lesions in mice were investigated with respect to the NO/cGMP/KATP pathway. To investigate our hypothesis, the mice were intraperitoneally pretreated with glibenclamide, L-NAME, or ODQ 30â¯min before treatment with DMSO, LASSBio-294 (1, 2, and 4â¯mg/kg, p.o.), LASSBio-897 (0.5, 1, and 2â¯mg/kg, p.o.), or omeprazole. After 1â¯h, the mice received absolute ethanol (4â¯ml/kg) by gavage to induce gastric mucosal lesions, and the microscopic and macroscopic parameters were evaluated. GSH (non-protein sulfhydryl groups) and MDA (malondialdehyde) concentrations, hemoglobin levels, nitric oxide production, myeloperoxidase (MPO) activity, and TNF-α and IL-1ß levels were also analyzed in the stomach after absolute ethanol administration. Pretreatment with LASSBio-294 or LASSBio-897 significantly reduced the microscopic and macroscopic lesion area. The compounds restored the GSH, MDA, and hemoglobin levels and reduced MPO activity. Moreover, the compounds significantly reduced nitrate and nitrite concentrations in the stomach samples after ethanol administration. Molecular docking studies revealed that LASSBio-294 and LASSBio-897 interact with active sites of the eNOS (endothelial nitric oxide synthase) enzymes through hydrogen bonds. LASSBio-294 and LASSBio-897 also reduced TNF-α and IL-1ß levels. It was observed that a NO synthase inhibitor, an ATP-sensitive potassium channel blocker, and a guanylate cyclase inhibitor significantly reversed the gastroprotective effects of these compounds. Thus, the gastroprotective effect of LASSBio-294 and LASSBio-897 against gastric lesions is mediated through the NO/cGMP cascade, followed by blocking of the KATP channels.