RESUMO
The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically gated oxide interfaces1,2, ultracold Fermi atoms3,4 and cuprate superconductors5,6, which are characterized by an intrinsically small phase stiffness, are paradigmatic examples where these tools are having a dramatic impact. Here we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bi2Sr2CaCu2O8+δ cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram.
RESUMO
Charge-ordered ground states permeate the phenomenology of 3d-based transition metal oxides, and more generally represent a distinctive hallmark of strongly correlated states of matter. The recent discovery of charge order in various cuprate families has fuelled new interest into the role played by this incipient broken symmetry within the complex phase diagram of high-T(c) superconductors. Here, we use resonant X-ray scattering to resolve the main characteristics of the charge-modulated state in two cuprate families: Bi2Sr(2-x)La(x)CuO(6+δ) (Bi2201) and YBa2Cu3O(6+y) (YBCO). We detect no signatures of spatial modulations along the nodal direction in Bi2201, thus clarifying the inter-unit-cell momentum structure of charge order. We also resolve the intra-unit-cell symmetry of the charge-ordered state, which is revealed to be best represented by a bond order with modulated charges on the O-2p orbitals and a prominent d-wave character. These results provide insights into the origin and microscopic description of charge order in cuprates, and its interplay with superconductivity.
RESUMO
We study the magnetic relaxation rate Γ of the single-molecule magnet Mn(12)-tBuAc as a function of the magnetic field component H(T) transverse to the molecule's easy axis. When the spin is near a magnetic quantum tunneling resonance, we find that Γ increases abruptly at certain values of H(T). These increases are observed just beyond values of H(T) at which a geometric-phase interference effect suppresses tunneling between two excited energy levels. The effect is washed out by rotating H(T) away from the spin's hard axis, thereby suppressing the interference effect. Detailed numerical calculations of Γ using the known spin Hamiltonian accurately reproduce the observed behavior. These results are the first experimental evidence for geometric-phase interference in a single-molecule magnet with true fourfold symmetry.
RESUMO
FeSe1-xSx remains one of the most enigmatic systems of Fe-based superconductors. While much is known about the orthorhombic parent compound, FeSe, the tetragonal samples, FeSe1-xSx with x > 0.17, remain relatively unexplored. Here, we provide an in-depth investigation of the electronic states of tetragonal FeSe0.81S0.19, using scanning tunneling microscopy and spectroscopy (STM/S) measurements, supported by angle-resolved photoemission spectroscopy (ARPES) and theoretical modeling. We analyze modulations of the local density of states (LDOS) near and away from Fe vacancy defects separately and identify quasiparticle interference (QPI) signals originating from multiple regions of the Brillouin zone, including the bands at the zone corners. We also observe that QPI signals coexist with a much stronger LDOS modulation for states near the Fermi level whose period is independent of energy. Our measurements further reveal that this strong pattern appears in the STS measurements as short range stripe patterns that are locally two-fold symmetric. Since these stripe patterns coexist with four-fold symmetric QPI around Fe-vacancies, the origin of their local two-fold symmetry must be distinct from that of nematic states in orthorhombic samples. We explore several aspects related to the stripes, such as the role of S and Fe-vacancy defects, and whether they can be explained by QPI. We consider the possibility that the observed stripe patterns may represent incipient charge order correlations, similar to those observed in the cuprates.
RESUMO
Superconductivity and charge density waves (CDWs) are competitive, yet coexisting, orders in cuprate superconductors. To understand their microscopic interdependence, a probe capable of discerning their interaction on its natural length and time scale is necessary. We use ultrafast resonant soft x-ray scattering to track the transient evolution of CDW correlations in YBa2Cu3O6+x after the quench of superconductivity by an infrared laser pulse. We observe a nonthermal response of the CDW order characterized by a near doubling of the correlation length within ≈1 picosecond of the superconducting quench. Our results are consistent with a model in which the interaction between superconductivity and CDWs manifests inhomogeneously through disruption of spatial coherence, with superconductivity playing the dominant role in stabilizing CDW topological defects, such as discommensurations.
RESUMO
In strongly correlated systems the strength of Coulomb interactions between electrons, relative to their kinetic energy, plays a central role in determining their emergent quantum mechanical phases. We perform resonant x-ray scattering on Bi2Sr2CaCu2O8+δ, a prototypical cuprate superconductor, to probe electronic correlations within the CuO2 plane. We discover a dynamic quasi-circular pattern in the x-y scattering plane with a radius that matches the wave vector magnitude of the well-known static charge order. Along with doping- and temperature-dependent measurements, our experiments reveal a picture of charge order competing with superconductivity where short-range domains along x and y can dynamically rotate into any other in-plane direction. This quasi-circular spectrum, a hallmark of Brazovskii-type fluctuations, has immediate consequences to our understanding of rotational and translational symmetry breaking in the cuprates. We discuss how the combination of short- and long-range Coulomb interactions results in an effective non-monotonic potential that may determine the quasi-circular pattern.
RESUMO
Charge density wave (CDW) order has been shown to compete and coexist with superconductivity in underdoped cuprates. Theoretical proposals for the CDW order include an unconventional d-symmetry form factor CDW, evidence for which has emerged from measurements, including resonant soft x-ray scattering (RSXS) in YBa2Cu3O6+x (YBCO). Here, we revisit RSXS measurements of the CDW symmetry in YBCO, using a variation in the measurement geometry to provide enhanced sensitivity to orbital symmetry. We show that the (0 0.31 L) CDW peak measured at the Cu L edge is dominated by an s form factor rather than a d form factor as was reported previously. In addition, by measuring both (0.31 0 L) and (0 0.31 L) peaks, we identify a pronounced difference in the orbital symmetry of the CDW order along the a and b axes, with the CDW along the a axis exhibiting orbital order in addition to charge order.
RESUMO
Incommensurate charge order (CO) has been identified as the leading competitor of high-temperature superconductivity in all major families of layered copper oxides, but the perplexing variety of CO states in different cuprates has confounded investigations of its impact on the transport and thermodynamic properties. The three-dimensional (3D) CO observed in YBa2Cu3O6+x in high magnetic fields is of particular interest, because quantum transport measurements have revealed detailed information about the corresponding Fermi surface. Here we use resonant X-ray scattering to demonstrate 3D-CO in underdoped YBa2Cu3O6+x films grown epitaxially on SrTiO3 in the absence of magnetic fields. The resonance profiles indicate that Cu sites in the charge-reservoir layers participate in the CO state, and thus efficiently transmit CO correlations between adjacent CuO2 bilayer units. The results offer fresh perspectives for experiments elucidating the influence of 3D-CO on the electronic properties of cuprates without the need to apply high magnetic fields.
RESUMO
After the discovery of stripelike order in lanthanum-based copper oxide superconductors, charge-ordering instabilities were observed in all cuprate families. However, it has proven difficult to distinguish between unidirectional (stripes) and bidirectional (checkerboard) charge order in yttrium- and bismuth-based materials. We used resonant x-ray scattering to measure the two-dimensional structure factor in the superconductor YBa2Cu3O(6+y) in reciprocal space. Our data reveal the presence of charge stripe order (i.e., locally unidirectional density waves), which may represent the true microscopic nature of charge modulation in cuprates. At the same time, we find that the well-established competition between charge order and superconductivity is stronger for charge correlations across the stripes than along them, which provides additional evidence for the intrinsic unidirectional nature of the charge order.