Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Nurs ; 21(1): 183, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804341

RESUMO

BACKGROUND: Point-of-care testing (POCT) is increasingly used in primary care. The rapid availability of the test result during the patient encounter increases the potential for patients and care providers to make a direct and joint decision on disease management. Our aim was to get insight into the first experiences of patients and healthcare professionals after introducing quality-controlled HbA1c and professional glucose POCT in diabetes care in their own general practices. METHODS: A cross-sectional observational study using paper questionnaires for patients, nurses and general practitioners (GPs) in 13 general practices in the Netherlands. HbA1c and professional glucose POCT was introduced after training and under day-to-day quality control. Patients filled in the questionnaire immediately after the test; nurses and GPs after a minimum period of three months from the starting date. Descriptive data analyses were performed. RESULTS: A total of 1551 fingerstick blood POC tests were performed (1126 HbA1c; 425 Glucose). For HbA1c POCT, 84 patients, 29 nurses and 11 GPs filled in the questionnaires. For professional glucose POCT, 30 patients, 17 nurses and 8 GPs responded. Response rates varied between 24 and 56%. Patients, nurses and GPs were generally (very) satisfied with the novel POC tests. Patients were most positive about the location (in the GPs' office) and execution of the POC test (by their own nurse), and the speed of the test result. Almost all nurses indicated to have sufficient knowledge and skills to perform the test. Both nurses and GPs had confidence in the test results and indicated they experienced a higher patient satisfaction than with regular blood tests. Perceived disadvantages were the time required to regularly calibrate the devices and the extension of the consultation time because of the test. Patients, nurses and GPs generally expressed they wanted to continue performing these POC tests in routine diabetes care. CONCLUSIONS: Patients, nurses and GPs expressed (very) positive first experiences after introducing HbA1c and professional glucose testing on two high-quality POCT devices in their own general practices. Further research, with a random selection procedure of practices and patients and in other regions and countries, is recommended to confirm these findings.

2.
ACS Sustain Chem Eng ; 8(1): 624-631, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-32953282

RESUMO

Reprocessing of reinforced composites is generally accompanied by loss of value and performance, as normally the reinforcing phase is damaged, or the matrix is lost in the process. In the search for more sustainable recyclable composite materials, we identify blends based on poly(l-lactide) (PLA) and thermotropic liquid crystalline polymers (LCP) as highly promising self-reinforced thermoplastic composites that can be recycled several times without loss in mechanical properties. For example, irrespective of the thermal history of the blend, injection molded bars of PLA containing 30 wt % LCP exhibit a tensile modulus of 6.4 GPa and tensile strength around 110 MPa, as long as the PLA matrix has a molecular weight of 170 kg mol-1 or higher. However, after several mechanical reprocessing steps, with the gradual decrease in the molecular weight of the PLA matrix, deterioration of the mechanical performance is observed. The origin of this behavior is found in the increasing LCP to PLA viscosity ratio: at a viscosity ratio below unity, the dispersed LCP droplets are effectively deformed into the desired fibrillar morphology during injection molding. However, deformation of LCP droplets becomes increasingly challenging when the viscosity ratio exceeds unity (i.e., when the PLA matrix viscosity decreases during consecutive reprocessing), eventually resulting in a nodular morphology, a poor molecular orientation of the LCP phase, and deterioration of the mechanical performance. This molecular weight dependency effectively places a limit on the maximum number of mechanical reprocessing steps before chemical upgrading of the PLA phase is required. Therefore, a feasible route to maintain or enhance the mechanical properties of the blend, independent of the number of reprocessing cycles, is proposed.

3.
Macromolecules ; 53(15): 6690-6702, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34305176

RESUMO

Thermoplastic composites consisting of a liquid crystalline polymer (LCP) and poly(lactide) (PLA) have the potential to combine good mechanical performance with recyclability and are therefore interesting as strong and sustainable composite materials. The viscoelastic behavior of both the LCP and the PLA is of great importance for the performance of these composites, as they determine the LCP morphology in the composite and play a crucial role in preventing the loss of mechanical performance upon recycling. Though the effect of the matrix viscosity is well-documented in literature, well-controlled systems where the LCP viscosity is tailored are not reported. Therefore, four LCPs, with the same chemical backbone but different molecular weights, are used to produce reinforced LCP-PLA composites. The differences in viscosity of the LCPs and viscosity ratio between the dispersed phase and the matrix of the blends are evident in the resultant composite morphology: in all cases fibrils are formed; however, the diameter increases considerably as the viscosity ratio increases for the higher molar mass LCPs. The fibril diameter ranges from several hundred nanometer to a few micrometer. A typical layered structure in the injection molded composites is observed, where the layer-thickness is influenced by the LCP viscosity. The LCPs are found to effectively reinforce the PLLA matrix, increasing the Young's modulus by 60% and the maximum stress by 40% for the composite containing 30 wt % of the most viscous LCP. Remarkably, this did not result in an increase in brittleness, effectively increasing the toughness of the composite compared to pure PLLA. The feasible reprocessability of this composite is confirmed, by subjecting it to three reprocessing cycles. The relaxation of the LCPs orientation upon heating is measured via in situ WAXD. We compare the relaxation in an amorphous PLA matrix and in a semicrystalline PLLA matrix with that of the pure LCPs. The matrix viscosity is found to strongly influence the relaxation. For example, in a low viscous amorphous matrix relaxation of the LCP fibrils into droplets dominates the process, whereas a semicrystalline matrix helps in maintaining the fibril morphology and intermolecular orientation of the LCP. In the latter case, the LCPs relax via contraction and coalescence of the polydomain texture and maintains a significant degree of orientation until the PLLA crystals melt and the matrix viscosity decreases. The insights gained in this study on the role of the LCP viscosity on the morphology and performance of thermoplastic composites, as well as the relaxation of LCPs in a matrix, will aid progression toward sustainable and reprocessable LCP reinforced thermoplastic composites.

4.
Macromolecules ; 53(13): 5297-5307, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32905284

RESUMO

Various oxirane monomers including alkyl ether or allyl-substituted ones such as 1-butene oxide, 1-hexene oxide, 1-octene oxide, butyl glycidyl ether, allyl glycidyl ether, and 2-ethylhexyl glycidyl ether were anionically copolymerized with CO2 into polycarbonates using onium salts as initiator in the presence of triethylborane. All copolymerizations exhibited a "living" character, and the monomer consumption was monitored by in situ Fourier-transform infrared spectroscopy. The various polycarbonate samples obtained were characterized by 1H NMR, GPC, and differential scanning calorimetry. In a second step, all-polycarbonate triblock copolymers demonstrating elastomeric behavior were obtained in one pot by sequential copolymerization of CO2 with two different epoxides, using a difunctional initiator. 1-Octene oxide was first copolymerized with CO2 to form the central soft poly(octene carbonate) block which was flanked by two external rigid poly(cyclohexene carbonate) blocks obtained through subsequent copolymerization of cyclohexene oxide with CO2. Upon varying the ratio of 1-octene oxide to cyclohexene oxide and their respective ratios to the initiator, three all-polycarbonate triblock samples were prepared with molar masses of about 350 kg/mol and 22, 26, and 29 mol % hard block content, respectively. The resulting triblock copolymers were analyzed using 1H NMR, GPC, thermogravimetric analysis, differential scanning calorimetry, and atomic force microscopy. All three samples demonstrated typical elastomeric behavior characterized by a high elongation at break and ultimate tensile strength in the same range as those of other natural and synthetic rubbers, in particular those used in applications such as tissue engineering.

5.
Commun Biol ; 3(1): 334, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591629

RESUMO

Fungal mycelium is an emerging bio-based material. Here, mycelium films are produced from liquid shaken cultures that have a Young's modulus of 0.47 GPa, an ultimate tensile strength of 5.0 MPa and a strain at failure of 1.5%. Treating the mycelial films with 0-32% glycerol impacts the material properties. The largest effect is observed after treatment with 32% glycerol decreasing the Young's modulus and the ultimate tensile strength to 0.003 GPa and 1.8 MPa, respectively, whereas strain at failure increases to 29.6%. Moreover, glycerol treatment makes the surface of mycelium films hydrophilic and the hyphal matrix absorbing less water. Results show that mycelium films treated with 8% and 16-32% glycerol classify as polymer- and elastomer-like materials, respectively, while non-treated films and films treated with 1-4% glycerol classify as natural material. Thus, mycelium materials can cover a diversity of material families.


Assuntos
Glicerol/farmacologia , Micélio/classificação , Materiais Biocompatíveis , Biofilmes/classificação , Biofilmes/efeitos dos fármacos , Biomassa , Microscopia , Microscopia Eletrônica de Varredura , Micélio/efeitos dos fármacos , Micélio/fisiologia , Micélio/ultraestrutura , Schizophyllum/efeitos dos fármacos , Schizophyllum/crescimento & desenvolvimento , Resistência à Tração/efeitos dos fármacos , Água/metabolismo
6.
Macromolecules ; 52(15): 6005-6017, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31543551

RESUMO

Thermoplastic composites based on thermotropic liquid crystalline polymer (LCP) materials are interesting candidates for reinforced composite application due to their promising mechanical performance and potential for recyclability. In combination with a societal push toward the more sustainable use of materials, these properties warrant new interest in this class of composites. Though numerous studies have been performed in the past, a coherent set of design rules for LCP design for the generation of injection-molded reinforced thermoplastic composites is not yet available, likely due to the complex interplay between LCP and matrix components. In this study, we report on the processing of poly(l-lactide) with two different LCPs, at relatively low processing temperatures. The study focuses on critical parameters for the morphological development and mechanical performance of LCP-reinforced composites. The influence of blend composition and the processing conditions, on the mechanical response of the composites, is investigated using rheology, wide-angle X-ray diffraction, mechanical analysis, and microscopy techniques. The study conclusively demonstrates that both the matrix viscosity and viscosity ratio between the dispersed and matrix phase, determine the deformation and breakup of the dispersed LCP droplets during extrusion. In addition, the thermal dependence of the viscosity ratio appears to be a critical parameter for the composite performance after injection molding. For example, during injection molding, stretching and molecular orientation of the LCP phase into highly oriented fibrils are prevented when the viscosity ratio increases rapidly upon cooling. In contrast, melt drawing proves to be a more effective processing route as the extensional flow field stabilizes elongated droplets, independent of the viscosity ratio. Overall, these findings provide valuable insights in the morphological development of LCP-reinforced blends, highlighting the importance of the development of viscoelastic properties as a function of temperature, and provide guidelines for the design of new LCP polymers and their thermoplastic composites.

7.
Macromolecules ; 52(7): 2789-2802, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30983633

RESUMO

We report on the role of temperature and shear on the melt behavior of iPP in the presence of the organic compound N1,N1'-(propane-1,3-diyl)bis(N2-hexyloxalamide) (OXA3,6). It is demonstrated that OXA3,6 facilitates a viscosity suppression when it resides in the molten state. The viscosity suppression is attributed to the interaction of iPP chains/subchains with molten OXA3,6 nanoclusters. The exact molecular mechanism has not been identified; nevertheless, a tentative explanation is proposed. The observed viscosity suppression appears similar to that encountered in polymer melts filled with solid nanoparticles, with the difference that the OXA3,6 compound reported in this study facilitates the viscosity suppression in the molten state. Upon cooling, as crystal growth of OXA3,6 progresses, the decrease in viscosity is suppressed. Retrospectively, segmental absorption of iPP chains on the surface of micrometer-sized OXA3,6 crystallites favors the formation of dangling arms, yielding OXA3,6 crystallites decorated with partially absorbed iPP chains. In other words, the resulting OXA3,6 particle morphology resembles that of a hairy particle or a starlike polymer chain. Such hairy particles effectively facilitate a viscosity enhancement, similar to branched polymer chains. This hypothesis and its implications for the shear behavior of iPP are discussed and supported using plate-plate rheometry and slit-flow experiments combined with small-angle X-ray scattering analysis.

8.
J Transl Autoimmun ; 2: 100013, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32743501

RESUMO

Idiopathic inflammatory myopathies (IIM) are a heterogeneous group of connective tissue diseases, collectively known as myositis. Diagnosis of IIM is challenging while timely recognition of an IIM is of utter importance considering treatment options and otherwise irreversible (severe) long-term clinical complications. With the EULAR/ACR classification criteria (2017) considerable advancement has been made in the diagnostic workup of IIM. While these criteria take into account clinical parameters as well as presence of one autoantibody, anti-Jo-1, several autoantibodies are associated with IIM and are currently evaluated to be incorporated into classification criteria. As individual antibodies occur at low frequency, the development of line blots allowing multiplex antibody analysis has improved laboratory diagnostics for IIM. The Euroline myositis line-blot assay (Euroimmun) allows screening and semi-quantitative measurement for 15 autoantibodies, i.e. myositis specific antibodies (MSA) to SRP, EJ, OJ, Mi-2α, Mi-2ß, TIF1-γ, MDA5, NXP2, SAE1, PL-12, PL-7, Jo-1 and myositis associated antibodies (MAA) to Ku, PM/Scl-75 and PM/Scl-100. To evaluate the clinical significance of detection and levels of these autoantibodies in the Netherlands, a retrospective analysis of all Dutch requests for extended myositis screening within a 1 year period was performed. A total of 187 IIM patients and 632 non-IIM patients were included. We conclude that frequencies of MSA and MAA observed in IIM patients in a routine diagnostic setting are comparable to cohort-based studies. Weak positive antibody levels show less diagnostic accuracy compared to positive antibody levels, except for anti-NXP2. Known associations between antibodies and skin involvement (anti-MDA5, anti-TIF1-γ), lung involvement (anti-Jo-1), and malignancy (anti-TIF1-γ) were confirmed in our IIM study population. The availability of multiplex antibody analyses will facilitate inclusion of additional autoantibodies in clinical myositis guidelines and help to accelerate diagnosing IMM with rare but specific antibodies.

9.
Polymers (Basel) ; 10(9)2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30960860

RESUMO

In this study, we report on the visco-elastic response during start-up and cessation of shear of a novel bio-based liquid crystal polymer. The ensuing morphological changes are analyzed at different length scales by in-situ polarized optical microscopy and wide-angle X-ray diffraction. Upon inception of shear, the polydomain texture is initially stretched, at larger strain break up processes become increasingly important, and eventually a steady state texture is obtained. The shear stress response showed good coherence between optical and rheo-X-ray data. The evolution of the orientation parameter coincides with the evolution of the texture: the order parameter increases as the texture stretches, drops slightly in the break up regime, and reaches a constant value in the plateau regime. The relaxation of the shear stress and the polydomain texture showed two distinct processes with different timescales: The first is fast contraction of the stretched domain texture; the second is the slow coalescence of the polydomain texture. The timescale of the orientation parameter's relaxation matched with that of the slow coalescence process. All processes were found to scale with shear rate in the tested regime. These observations can have far reaching implications for the processing of liquid crystal polymers as they indicate that increased shear rates during processing can correspond to an increased relaxation rate of the orientation parameter and, therefore, a decrease in anisotropy and material properties after cooling.

10.
Macromolecules ; 51(13): 4882-4895, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30018462

RESUMO

We report on the effect of an aliphatic oxalamide based nucleating agent (OXA3,6) on the melt and crystallization behavior of isotactic polypropylene (iPP) under defined shear conditions. Through polarized optical microscopy, we demonstrate that OXA3,6 self-assembles from the iPP melt into rhombic crystals whereas their size and distribution proved highly dependent on the employed cooling rates. The presence of 0.5 wt % of OXA3,6 in iPP results in a significant suppression in iPP melt viscosity, which could not be explained via molecular modeling. A possible cause for the drop in viscosity in the presence of OXA3,6 is attributed to the interaction (absorption) of high molecular weight iPP chains with the nucleating agent, thereby suppressing their contribution to the viscoelastic response of the melt. This proposed mechanism for the suppression in melt viscosity appears similar to that encountered by the homogeneous distribution of nanoparticles such as CNTs, graphene, and silica. Shear experiments, performed using a slit flow device combined with small-angle X-ray diffraction measurements, indicate that crystallization is significantly enhanced in the presence of OXA3,6 at relatively low shear rates despite its lowered sensitivity to shear. This enhancement in crystallization is attributed to the shear alignment of the rhombic OXA3,6 crystals that provide surface for iPP kebab growth upon cooling. Overall, the suppression in melt viscosity in combination with enhanced nucleation efficiency at low as well as high shear rates makes this self-assembling oxalamide based nucleating agent a promising candidate for fast processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA