RESUMO
Neurotrophins, essential regulators of many aspects of neuronal differentiation and function, signal via four receptors, p75, TrkA, TrkB and TrkC. The three Trk paralogs are members of the LIG superfamily of membrane proteins, which share extracellular domains consisting of leucine-rich repeat and C2 Ig domains. Another LIG protein, LINGO-1 has been reported to bind and influence signaling of p75 as well as TrkA, TrkB and TrkC. Here we examine the manner in which LINGO-1 influences the function of TrkA, TrkB and TrkC. We report that Trk activation promotes Trk association with LINGO-1, and that this association promotes Trk degradation by a lysosomal mechanism. This mechanism resembles the mechanism by which another LIG protein, LRIG1, promotes lysosomal degradation of receptor tyrosine kinases such as the EGF receptor. We present evidence indicating that the Trk/LINGO-1 interaction occurs, in part, within recycling endosomes. We show that a mutant form of LINGO-1, with much of the extracellular domain deleted, has the capacity to enhance TrkA signaling in PC12 cells, possibly by acting as an inhibitor of Trk down-regulation by full length LINGO-1. We propose that LINGO-1 functions as a negative feedback regulator of signaling by cognate receptor tyrosine kinases including TrkA, TrkB and TrkC.
Assuntos
Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Receptor trkC/metabolismo , Transdução de Sinais/genética , Animais , Citoplasma/metabolismo , Regulação para Baixo , Endossomos/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Células PC12 , Fosforilação , RatosRESUMO
Axon outgrowth inhibition in response to trauma is thought to be mediated via the binding of myelin-associated inhibitory factors (e.g. Nogo-66, myelin-associated glycoprotein, oligodendrocyte myelin glycoprotein, and myelin basic protein) to a putative tripartite LINGO-1·p75(NTR)·Nogo-66 receptor (NgR) complex at the cell surface. We found that endogenous LINGO-1 expression in neurons in the cortex and cerebellum is intracellular. Mutation or truncation of the highly conserved LINGO-1 C terminus altered this intracellular localization, causing poor intracellular retention and increased plasma membrane expression. p75(NTR) associated predominantly with natively expressed LINGO-1 containing immature N-glycans, characteristic of protein that has not completed trans-Golgi-mediated processing, whereas mutant forms of LINGO-1 with enhanced plasma membrane expression did not associate with p75(NTR). Co-immunoprecipitation experiments demonstrated that LINGO-1 and NgR competed for binding to p75(NTR) in a manner that is difficult to reconcile with the existence of a LINGO-1·p75(NTR)·NgR ternary complex. These findings contradict models postulating functional LINGO-1·p75(NTR)·NgR complexes in the plasma membrane.
Assuntos
Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Animais Recém-Nascidos , Ligação Competitiva , Encéfalo/citologia , Encéfalo/metabolismo , Membrana Celular/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Microscopia Confocal , Mutação , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Receptor Nogo 1 , Polissacarídeos/metabolismo , Ligação Proteica , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de Fator de Crescimento Neural/genéticaRESUMO
Quercetin is a common flavonoid polyphenol which has been shown to exert neuroprotective actions in vitro and in vivo. Though quercetin has antioxidant properties, it has been suggested that neuroprotection may be ascribed to its ability of inducing the cell's own defense mechanisms. The present study investigated whether quercetin could increase the levels of paraoxonase 2 (PON2), a mitochondrial enzyme expressed in brain cells, which has been shown to have potent antioxidant properties. PON2 protein, mRNA, and lactonase activity were highest in mouse striatal astrocytes. Quercetin increased PON2 levels, possibly by activating the JNK/AP-1 pathway. The increased PON2 levels induced by quercetin resulted in decreased oxidative stress and ensuing toxicity induced by two oxidants. The neuroprotective effect of quercetin was significantly diminished in cells from PON2 knockout mice. These findings suggest that induction of PON2 by quercetin represents an important mechanism by which this polyphenol may exert its neuroprotective action.
Assuntos
Arildialquilfosfatase/metabolismo , Corpo Estriado/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Quercetina/farmacologia , Animais , Células Cultivadas , Corpo Estriado/enzimologia , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Paraoxonase 2 (PON2) is a member of the paraoxonase gene family also comprising PON1 and PON3. PON2 functions as a lactonase and exhibits anti-bacterial as well as antioxidant properties. At the cellular level, PON2 localizes to the mitochondrial and endoplasmic reticulum membranes where it scavenges reactive oxygen species. PON2 is of particular interest as it is the only paraoxonase expressed in brain tissue and appears to play a critical role in mitigating oxidative stress in the brain. The aim of this study was to investigate the expression of PON2 at the protein and mRNA level in the brain and liver of mice through development to identify potential age windows of susceptibility to oxidative stress, as well as to compare expression of hepatic PON2 to expression of PON1 and PON3. Overall, PON2 expression in the brain was lower in neonatal mice and increased with age up to postnatal day (PND) 21, with a significant decrease observed at PND 30 and 60. In contrast, the liver showed continuously increasing levels of PON2 with age, similar to the patterns of PON1 and PON3. PON2 protein levels were also investigated in brain samples from non-human primates, with PON2 increasing with age up to the infant stage and decreasing at the juvenile stage, mirroring the results observed in the mouse brain. These variable expression levels of PON2 suggest that neonatal and young adult animals may be more susceptible to neurological insult by oxidants due to lower levels of PON2 in the brain.
Assuntos
Arildialquilfosfatase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Arildialquilfosfatase/genética , Encéfalo/metabolismo , Feminino , Haplorrinos , Immunoblotting , Fígado/metabolismo , Masculino , Camundongos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Sequential proteolytic cleavages of amyloid-ß protein precursor (AßPP) by ß-secretase and γ-secretase generate amyloid ß (Aß) peptides, which are thought to contribute to Alzheimer's disease (AD). Much of this processing occurs in endosomes following endocytosis of AßPP from the plasma membrane. However, this pathogenic mode of processing AßPP may occur in competition with lysosomal degradation of AßPP, a common fate of membrane proteins trafficking through the endosomal system. Following up on published reports that LINGO-1 binds and promotes the amyloidogenic processing of AßPP we have examined the consequences of LINGO-1/AßPP interactions. We report that LINGO-1 and its paralogs, LINGO-2 and LINGO-3, decrease processing of AßPP in the amyloidogenic pathway by promoting lysosomal degradation of AßPP. We also report that LINGO-1 levels are reduced in AD brain, representing a possible pathogenic mechanism stimulating the generation of Aß peptides in AD.
RESUMO
BACKGROUND: Cytokine flow cytometry (CFC) provides a multiparameter alternative to ELISPOT assays for rapid quantitation of antigen-specific T cells. To increase the throughput of CFC assays, we have optimized methods for stimulating, staining, and acquiring whole blood or PBMC samples in 96-well or 24-well plates. RESULTS: We have developed a protocol for whole blood stimulation and processing in deep-well 24- or 96-well plates, and fresh or cryopreserved peripheral blood mononuclear cell (PBMC) stimulation and processing in conventional 96-well round-bottom plates. Samples from both HIV-1-seronegative and HIV-1-seropositive donors were tested. We show that the percent response, staining intensity, and cell recovery are comparable to stimulation and processing in tubes using traditional methods. We also show the equivalence of automated gating templates to manual gating for CFC data analysis. CONCLUSION: When combined with flow cytometry analysis using an automated plate loader and an automated analysis algorithm, these plate-based methods provide a higher throughput platform for CFC, as well as reducing operator-induced variability. These factors will be important for processing the numbers of samples required in large clinical trials, and for epitope mapping of patient responses.
Assuntos
Citocinas/análise , Citometria de Fluxo/métodos , Algoritmos , Automação , Criopreservação , Citometria de Fluxo/instrumentação , Citometria de Fluxo/normas , Corantes Fluorescentes , Humanos , Software , Linfócitos T/imunologia , Fatores de TempoRESUMO
Polybrominated diphenyl ethers (PBDEs), extensively used in the past few decades as flame retardants in a variety of consumer products, have become world-wide persistent environmental pollutants. Levels in North America are usually higher than those in Europe and Asia, and body burden is 3-to-9-fold higher in infants and toddlers than in adults. The latter has raised concern for potential developmental toxicity and neurotoxicity of PBDEs. Experimental studies in animals and epidemiological observations in humans suggest that PBDEs may be developmental neurotoxicants. Pre- and/or post-natal exposure to PBDEs may cause long-lasting behavioral abnormalities, particularly in the domains of motor activity and cognition. The mechanisms underlying the developmental neurotoxic effects of PBDEs are not known, though several hypotheses have been put forward. One general mode of action relates to the ability of PBDEs to impair thyroid hormone homeostasis, thus indirectly affecting the developing brain. An alternative or additional mode of action involves a direct effect of PBDEs on nervous system cells; PBDEs can cause oxidative stress-related damage (DNA damage, mitochondrial dysfunction, apoptosis), and interfere with signal transduction (particularly calcium signaling), and with neurotransmitter systems. Important issues such as bioavailability and metabolism of PBDEs, extrapolation of results to low level of exposures, and the potential effects of interactions among PBDE congeners and between PBDEs and other contaminants also need to be taken into account.
Assuntos
Encéfalo/efeitos dos fármacos , Desenvolvimento Infantil/efeitos dos fármacos , Feto/efeitos dos fármacos , Éteres Difenil Halogenados/toxicidade , Animais , Sinalização do Cálcio/efeitos dos fármacos , Criança , Glutationa/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Hormônios Tireóideos/metabolismoRESUMO
Paraoxonase 2 (PON2) is a member of a gene family which also includes the more studied PON1, as well as PON3. PON2 is unique among the three PONs, as it is expressed in brain tissue. PON2 is a lactonase and displays anti-oxidant and anti-inflammatory properties. PON2 levels are highest in dopaminergic regions (e.g. striatum), are higher in astrocytes than in neurons, and are higher in brain and peripheral tissues of female mice than male mice. At the sub-cellular level, PON2 localizes primarily in mitochondria, where it scavenges superoxides. Lack of PON2 (as in PON2(-/-) mice), or lower levels of PON2 (as in male mice compared to females) increases susceptibility to oxidative stress-induced toxicity. Estradiol increases PON2 expression in vitro and in vivo, and provides neuroprotection against oxidative stress. Such neuroprotection is not present in CNS cells from PON2(-/-) mice. Similar results are also found with the polyphenol quercetin. PON2, given its cellular localization and antioxidant and anti-inflammatory actions, may represent a relevant enzyme involved in neuroprotection, and may represent a novel target for neuroprotective strategies. Its differential expression in males and females may explain gender differences in the incidence of various diseases, including neurodevelopmental, neurological, and neurodegenerative diseases.
Assuntos
Antipsicóticos/metabolismo , Arildialquilfosfatase/metabolismo , Encéfalo/metabolismo , Fármacos Neuroprotetores/metabolismo , Animais , Antipsicóticos/uso terapêutico , Arildialquilfosfatase/genética , Arildialquilfosfatase/uso terapêutico , Feminino , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismoRESUMO
Neuronal dendrites are structurally and functionally dynamic in response to changes in afferent activity. The fragile X mental retardation protein (FMRP) is an mRNA binding protein that regulates activity-dependent protein synthesis and morphological dynamics of dendrites. Loss and abnormal expression of FMRP occur in fragile X syndrome (FXS) and some forms of autism spectrum disorders. To provide further understanding of how FMRP signaling regulates dendritic dynamics, we examined dendritic expression and localization of FMRP in the reptilian and avian nucleus laminaris (NL) and its mammalian analogue, the medial superior olive (MSO), in rodents and humans. NL/MSO neurons are specialized for temporal processing of low-frequency sounds for binaural hearing, which is impaired in FXS. Protein BLAST analyses first demonstrate that the FMRP amino acid sequences in the alligator and chicken are highly similar to human FMRP with identical mRNA-binding and phosphorylation sites, suggesting that FMRP functions similarly across vertebrates. Immunocytochemistry further reveals that NL/MSO neurons have very high levels of dendritic FMRP in low-frequency hearing vertebrates including alligator, chicken, gerbil, and human. Remarkably, dendritic FMRP in NL/MSO neurons often accumulates at branch points and enlarged distal tips, loci known to be critical for branch-specific dendritic arbor dynamics. These observations support an important role for FMRP in regulating dendritic properties of binaural neurons that are essential for low-frequency sound localization and auditory scene segregation, and support the relevance of studying this regulation in nonhuman vertebrates that use low frequencies in order to further understand human auditory processing disorders.
Assuntos
Jacarés e Crocodilos/metabolismo , Tronco Encefálico/metabolismo , Galinhas/metabolismo , Dendritos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Gerbillinae/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Humanos , Masculino , Pessoa de Meia-Idade , Ratos Sprague-Dawley/metabolismo , Proteínas de Répteis/genética , Proteínas de Répteis/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Complexo Olivar Superior/metabolismoRESUMO
A comprehensive, unbiased inventory of synuclein forms present in Lewy bodies from patients with dementia with Lewy bodies was carried out using two-dimensional immunoblot analysis, novel sandwich enzyme-linked immunosorbent assays with modification-specific synuclein antibodies, and mass spectroscopy. The predominant modification of alpha-synuclein in Lewy bodies is a single phosphorylation at Ser-129. In addition, there is a set of characteristic modifications that are present to a lesser extent, including ubiquitination at Lys residues 12, 21, and 23 and specific truncations at Asp-115, Asp-119, Asn-122, Tyr-133, and Asp-135. No other modifications are detectable by tandem mass spectrometry mapping, except for a ubiquitous N-terminal acetylation. Small amounts of Ser-129 phosphorylated and Asp-119-truncated alpha-synuclein are present in the soluble fraction of both normal and disease brains, suggesting that these Lewy body-associated forms are produced during normal metabolism of alpha-synuclein. In contrast, ubiquitination is only detected in Lewy bodies and is primarily present on phosphorylated synuclein; it therefore likely occurs after phosphorylated synuclein has deposited into Lewy bodies. This invariant pattern of specific phosphorylation, truncation, and ubiquitination is also present in the detergent-insoluble fraction of brain from patients with familial Parkinson's disease (synuclein A53T mutation) as well as multiple system atrophy, suggesting a common pathogenic pathway for both genetic and sporadic Lewy body diseases. These observations are most consistent with a model in which preferential accumulation of normally produced Ser-129 phosphorylated alpha-synuclein is the key event responsible for the formation of Lewy bodies in various Lewy body diseases.