Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Am J Hum Genet ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39013458

RESUMO

The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery. We have recruited 209 individuals with a rare EHMT1 variant and performed comprehensive molecular in silico and in vitro testing alongside DNA methylation (DNAm) signature analysis for the identified variants. We (re)classified the variants as likely pathogenic/pathogenic (molecularly confirming Kleefstra syndrome) in 191 individuals. We provide an updated and broader clinical and molecular spectrum of Kleefstra syndrome, including individuals with normal intelligence and familial occurrence. Analysis of the EHMT1 variants reveals a broad range of molecular effects and their associated phenotypes, including distinct genotype-phenotype associations. Notably, we showed that disruption of the "reader" function of the ankyrin repeat domain by a protein altering variant (PAV) results in a KLEFS1-specific DNAm signature and milder phenotype, while disruption of only "writer" methyltransferase activity of the SET domain does not result in KLEFS1 DNAm signature or typical KLEFS1 phenotype. Similarly, N-terminal truncating variants result in a mild phenotype without the DNAm signature. We demonstrate how comprehensive variant analysis can provide insights into pathogenesis of the disorder and DNAm signature. In summary, this study presents a comprehensive overview of KLEFS1 and EHMT1, revealing its broader spectrum and deepening our understanding of its molecular mechanisms, thereby informing accurate variant interpretation, counseling, and clinical management.

2.
J Med Genet ; 61(6): 549-552, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38272662

RESUMO

Fetal hydrops as detected by prenatal ultrasound usually carries a poor prognosis depending on the underlying aetiology. We describe the prenatal and postnatal clinical course of two unrelated female probands in whom de novo heterozygous missense variants in the planar cell polarity gene CELSR1 were detected using exome sequencing. Using several in vitro assays, we show that the CELSR1 p.(Cys1318Tyr) variant disrupted the subcellular localisation, affected cell-cell junction, impaired planar cell polarity signalling and lowered proliferation rate. These observations suggest that deleterious rare CELSR1 variants could be a possible cause of fetal hydrops.


Assuntos
Heterozigoto , Hidropisia Fetal , Mutação de Sentido Incorreto , Humanos , Feminino , Mutação de Sentido Incorreto/genética , Hidropisia Fetal/genética , Hidropisia Fetal/patologia , Gravidez , Derrame Pleural/genética , Derrame Pleural/patologia , Caderinas/genética , Sequenciamento do Exoma , Polaridade Celular/genética
3.
Am J Hum Genet ; 108(9): 1692-1709, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34375587

RESUMO

Kainate receptors (KARs) are glutamate-gated cation channels with diverse roles in the central nervous system. Bi-allelic loss of function of the KAR-encoding gene GRIK2 causes a nonsyndromic neurodevelopmental disorder (NDD) with intellectual disability and developmental delay as core features. The extent to which mono-allelic variants in GRIK2 also underlie NDDs is less understood because only a single individual has been reported previously. Here, we describe an additional eleven individuals with heterozygous de novo variants in GRIK2 causative for neurodevelopmental deficits that include intellectual disability. Five children harbored recurrent de novo variants (three encoding p.Thr660Lys and two p.Thr660Arg), and four children and one adult were homozygous for a previously reported variant (c.1969G>A [p.Ala657Thr]). Individuals with shared variants had some overlapping behavioral and neurological dysfunction, suggesting that the GRIK2 variants are likely pathogenic. Analogous mutations introduced into recombinant GluK2 KAR subunits at sites within the M3 transmembrane domain (encoding p.Ala657Thr, p.Thr660Lys, and p.Thr660Arg) and the M3-S2 linker domain (encoding p.Ile668Thr) had complex effects on functional properties and membrane localization of homomeric and heteromeric KARs. Both p.Thr660Lys and p.Thr660Arg mutant KARs exhibited markedly slowed gating kinetics, similar to p.Ala657Thr-containing receptors. Moreover, we observed emerging genotype-phenotype correlations, including the presence of severe epilepsy in individuals with the p.Thr660Lys variant and hypomyelination in individuals with either the p.Thr660Lys or p.Thr660Arg variant. Collectively, these results demonstrate that human GRIK2 variants predicted to alter channel function are causative for early childhood development disorders and further emphasize the importance of clarifying the role of KARs in early nervous system development.


Assuntos
Encéfalo/metabolismo , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Deficiência Intelectual/genética , Mutação , Receptores de Ácido Caínico/genética , Adolescente , Adulto , Alelos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Epilepsia/diagnóstico por imagem , Epilepsia/metabolismo , Epilepsia/patologia , Potenciais Evocados/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Estudos de Associação Genética , Heterozigoto , Homozigoto , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Ativação do Canal Iônico , Masculino , Modelos Moleculares , Neurônios/metabolismo , Neurônios/patologia , Conformação Proteica , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/metabolismo , Receptor de GluK2 Cainato
4.
Genet Med ; 25(9): 100883, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37154149

RESUMO

PURPOSE: Studies have previously implicated PRRX1 in craniofacial development, including demonstration of murine Prrx1 expression in the preosteogenic cells of the cranial sutures. We investigated the role of heterozygous missense and loss-of-function (LoF) variants in PRRX1 associated with craniosynostosis. METHODS: Trio-based genome, exome, or targeted sequencing were used to screen PRRX1 in patients with craniosynostosis; immunofluorescence analyses were used to assess nuclear localization of wild-type and mutant proteins. RESULTS: Genome sequencing identified 2 of 9 sporadically affected individuals with syndromic/multisuture craniosynostosis, who were heterozygous for rare/undescribed variants in PRRX1. Exome or targeted sequencing of PRRX1 revealed a further 9 of 1449 patients with craniosynostosis harboring deletions or rare heterozygous variants within the homeodomain. By collaboration, 7 additional individuals (4 families) were identified with putatively pathogenic PRRX1 variants. Immunofluorescence analyses showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localization. Of patients with variants considered likely pathogenic, bicoronal or other multisuture synostosis was present in 11 of 17 cases (65%). Pathogenic variants were inherited from unaffected relatives in many instances, yielding a 12.5% penetrance estimate for craniosynostosis. CONCLUSION: This work supports a key role for PRRX1 in cranial suture development and shows that haploinsufficiency of PRRX1 is a relatively frequent cause of craniosynostosis.


Assuntos
Craniossinostoses , Proteínas de Homeodomínio , Animais , Humanos , Camundongos , Sequência de Bases , Suturas Cranianas/patologia , Craniossinostoses/genética , Genes Homeobox , Proteínas de Homeodomínio/genética , Penetrância
5.
Prenat Diagn ; 43(4): 527-543, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36647814

RESUMO

OBJECTIVE: We performed a 1-year evaluation of a novel strategy of simultaneously analyzing single nucleotide variants (SNVs), copy number variants (CNVs) and copy-number-neutral Absence-of-Heterozygosity from Whole Exome Sequencing (WES) data for prenatal diagnosis of fetuses with ultrasound (US) anomalies and a non-causative QF-PCR result. METHODS: After invasive diagnostics, whole exome parent-offspring trio-sequencing with exome-wide CNV analysis was performed in pregnancies with fetal US anomalies and a non-causative QF-PCR result (WES-CNV). On request, additional SNV-analysis, restricted to (the) requested gene panel(s) only (with the option of whole exome SNV-analysis afterward) was performed simultaneously (WES-CNV/SNV) or as rapid SNV-re-analysis, following a normal CNV analysis. RESULTS: In total, 415 prenatal samples were included. Following a non-causative QF-PCR result, WES-CNV analysis was initially requested for 74.3% of the chorionic villus (CV) samples and 45% of the amniotic fluid (AF) samples. In case WES-CNV analysis did not reveal a causative aberration, SNV-re-analysis was requested in 41.7% of the CV samples and 17.5% of the AF samples. All initial analyses could be finished within 2 weeks after sampling. For SNV-re-analysis during pregnancy, turn-around-times (TATs) varied between one and 8 days. CONCLUSION: We show a highly efficient all-in-one WES-based strategy, with short TATs, and the option of rapid SNV-re-analysis after a normal CNV result.


Assuntos
Variações do Número de Cópias de DNA , Feto , Gravidez , Feminino , Humanos , Sequenciamento do Exoma , Heterozigoto , Feto/diagnóstico por imagem , Feto/anormalidades , Nucleotídeos
6.
Genet Med ; 24(3): 645-653, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34906484

RESUMO

PURPOSE: Although the introduction of exome sequencing (ES) has led to the diagnosis of a significant portion of patients with neurodevelopmental disorders (NDDs), the diagnostic yield in actual clinical practice has remained stable at approximately 30%. We hypothesized that improving the selection of patients to test on the basis of their phenotypic presentation will increase diagnostic yield and therefore reduce unnecessary genetic testing. METHODS: We tested 4 machine learning methods and developed PredWES from these: a statistical model predicting the probability of a positive ES result solely on the basis of the phenotype of the patient. RESULTS: We first trained the tool on 1663 patients with NDDs and subsequently showed that diagnostic ES on the top 10% of patients with the highest probability of a positive ES result would provide a diagnostic yield of 56%, leading to a notable 114% increase. Inspection of our model revealed that for patients with NDDs, comorbid abnormal (lower) muscle tone and microcephaly positively correlated with a conclusive ES diagnosis, whereas autism was negatively associated with a molecular diagnosis. CONCLUSION: In conclusion, PredWES allows prioritizing patients with NDDs eligible for diagnostic ES on the basis of their phenotypic presentation to increase the diagnostic yield, making a more efficient use of health care resources.


Assuntos
Exoma , Transtornos do Neurodesenvolvimento , Exoma/genética , Humanos , Aprendizado de Máquina , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Sequenciamento do Exoma
7.
Clin Genet ; 102(6): 537-542, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36029130

RESUMO

Biallelic loss-of-function variants in the TBC1D2B gene were recently reported as a cause of a neurodevelopmental disorder with seizures and gingival overgrowth. Here, we report two male siblings with the similar clinical characteristics. They started with gingival overgrowth and bilateral growth of soft tissues in the malar region at 3 years of age, which evolved with significant maxillary hypertrophy and compression of the brainstem due to fibrous dysplasia of facial bones. After disease evolution, they presented with mental deterioration, limb tremors, and gait ataxia. One of them also presented with seizures. Whole exome sequencing revealed a novel biallelic frameshift variant [c.595del; p.(Val199Trpfs*22)] in the TBC1D2B gene in both patients, which was confirmed and found in heterozygous state in each of their parents. There are strong similarities in clinical characteristics, age of onset, and evolution between the patients described here and cases reported in the literature, including cherubism-like phenotype with progressive gingival overgrowth and seizures. This is the fourth family in the world in which a biallelic loss-of-function variant in the TBC1D2B gene is associated with this phenotype. These results support that loss of TBC1D2B is the cause of this rare condition.


Assuntos
Disfunção Cognitiva , Crescimento Excessivo da Gengiva , Humanos , Masculino , Disfunção Cognitiva/genética , Mutação da Fase de Leitura , Crescimento Excessivo da Gengiva/genética , Linhagem , Convulsões/genética , Irmãos
8.
Genet Med ; 22(4): 803-808, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31767986

RESUMO

PURPOSE: Uniparental disomy (UPD) is the rare occurrence of two homologous chromosomes originating from the same parent and is typically identified by marker analysis or single-nucleotide polymorphism (SNP)-based microarrays. UPDs may lead to disease due to imprinting effects, underlying homozygous pathogenic variants, or low-level mosaic aneuploidies. In this study we detected clinically relevant UPD events in both trio and single exome sequencing (ES) data. METHODS: UPD was detected by applying a method based on Mendelian inheritance errors to a cohort of 4912 ES trios (all UPD types) and by using median absolute deviation-scaled regions of homozygosity to a cohort of 29,723 single ES samples (isodisomy only). RESULTS: As positive controls, we accurately identified three mixed UPD, three isodisomy, as well as two segmental UPD events that were all previously reported by SNP-based microarrays. In addition, we identified three segmental UPD and 11 isodisomy events. This resulted in a novel diagnosis based on imprinting for one patient, and adjusted genetic counseling for another patient. CONCLUSION: UPD can easily be identified using both single and trio ES and may be clinically relevant to patients. UPD analysis should become routine in clinical ES, because it increases the diagnostic yield and could affect genetic counseling.


Assuntos
Exoma , Dissomia Uniparental , Exoma/genética , Homozigoto , Humanos , Polimorfismo de Nucleotídeo Único/genética , Dissomia Uniparental/genética , Sequenciamento do Exoma
9.
Am J Med Genet A ; 182(11): 2731-2736, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32945093

RESUMO

We present a family with three girls presenting similar dysmorphic features, including overgrowth, intellectual disability, macrocephaly, prominent forehead, midface retrusion, strabismus, and scoliosis. Both parents were unaffected, suggesting the presence of an autosomal recessive syndrome. Following exome sequencing, a heterozygous nonsense variant was identified in the NFIX gene in all three siblings. The father appeared to have a low-grade (7%) mosaicism for this variant in his blood. Previously, de novo pathogenic variants in NFIX have been identified in Marshall-Smith syndrome and Malan syndrome, which share distinctive phenotypic features shared with the patients of the present family. This case emphasizes the importance of further molecular analysis especially in familial cases, to exclude the possibility of parental mosaicism.


Assuntos
Deficiências do Desenvolvimento/patologia , Transtornos do Crescimento/patologia , Deficiência Intelectual/patologia , Mosaicismo , Mutação , Fatores de Transcrição NFI/genética , Fenótipo , Adulto , Deficiências do Desenvolvimento/genética , Feminino , Transtornos do Crescimento/genética , Humanos , Deficiência Intelectual/genética , Masculino , Linhagem , Irmãos , Adulto Jovem
10.
J Child Psychol Psychiatry ; 61(5): 545-555, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31849056

RESUMO

BACKGROUND: Mental disorders, including Attention-Deficit/Hyperactivity Disorder (ADHD), have a complex etiology, and identification of underlying genetic risk factors is challenging. This study used a multistep approach to identify and validate a novel risk gene for ADHD and psychiatric comorbidity. METHODS: In a single family, severely affected by ADHD and cooccurring disorders, we applied single nucleotide polymorphism (SNP)-array analysis to detect copy-number variations (CNVs) linked to disease. Genes present in the identified CNV were subsequently tested for their association with ADHD in the largest data set currently available (n = 55,374); this gene-set and gene-based association analyses were based on common genetic variants. Significant findings were taken forward for functional validation using Drosophila melanogaster as biological model system, altering gene expression using the GAL4-UAS system and a pan-neuronal driver, and subsequently characterizing locomotor activity and sleep as functional readouts. RESULTS: We identified a copy number gain in 8p23.3, which segregated with psychiatric phenotypes in the family and was confirmed by quantitative RT-PCR. Common genetic variants in this locus were associated with ADHD, especially those in FBXO25 and TDRP. Overexpression of the FBXO25 orthologue in two Drosophila models consistently led to increased locomotor activity and reduced sleep compared with the genetic background control. CONCLUSIONS: We combine ADHD risk gene identification in an individual family with genetic association testing in a large case-control data set and functional validation in a model system, together providing an important illustration of an integrative approach suggesting that FBXO25 contributes to key features of ADHD and comorbid neuropsychiatric disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Drosophila melanogaster/genética , Evolução Molecular , Proteínas F-Box/genética , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Fenótipo , Animais , Pré-Escolar , Comorbidade , Modelos Animais de Doenças , Saúde da Família , Feminino , Humanos , Masculino , Proteínas Nucleares/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética
11.
Prenat Diagn ; 40(8): 972-983, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32333414

RESUMO

OBJECTIVE: The purpose of this study was to explore the diagnostic yield and clinical utility of trio-based rapid whole exome sequencing (rWES) in pregnancies of fetuses with a wide range of congenital anomalies detected by ultrasound imaging. METHODS: In this observational study, we analyzed the first 54 cases referred to our laboratory for prenatal rWES to support clinical decision making, after the sonographic detection of fetal congenital anomalies. The most common identified congenital anomalies were skeletal dysplasia (n = 20), multiple major fetal congenital anomalies (n = 17) and intracerebral structural anomalies (n = 7). RESULTS: A conclusive diagnosis was identified in 18 of the 54 cases (33%). Pathogenic variants were detected most often in fetuses with skeletal dysplasia (n = 11) followed by fetuses with multiple major fetal congenital anomalies (n = 4) and intracerebral structural anomalies (n = 3). A survey, completed by the physicians for 37 of 54 cases, indicated that the rWES results impacted clinical decision making in 68% of cases. CONCLUSIONS: These results suggest that rWES improves prenatal diagnosis of fetuses with congenital anomalies, and has an important impact on prenatal and peripartum parental and clinical decision making.


Assuntos
Anormalidades Congênitas/diagnóstico , Anormalidades Congênitas/genética , Sequenciamento do Exoma , Ultrassonografia Pré-Natal , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Adulto , Tomada de Decisões , Feminino , Feto/diagnóstico por imagem , Testes Genéticos/métodos , Humanos , Masculino , Gravidez , Diagnóstico Pré-Natal/métodos , Reprodutibilidade dos Testes , Adulto Jovem
12.
Hum Genet ; 138(11-12): 1301-1311, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31686214

RESUMO

Haploinsufficiency of FOXF1 causes alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a lethal neonatal lung developmental disorder. We describe two similar heterozygous CNV deletions involving the FOXF1 enhancer and re-analyze FOXF1 missense mutation, all associated with an unexpectedly mitigated disease phenotype. In one case, the deletion of the maternal allele of the FOXF1 enhancer caused pulmonary hypertension and histopathologically diagnosed MPV without the typical ACD features. In the second case, the deletion of the paternal enhancer resulted in ACDMPV rather than the expected neonatal lethality. In both cases, FOXF1 expression in lung tissue was higher than usually seen or expected in patients with similar deletions, suggesting an increased activity of the remaining allele of the enhancer. Sequencing of these alleles revealed two rare SNVs, rs150502618-A and rs79301423-T, mapping to the partially overlapping binding sites for TFAP2s and CTCF in the core region of the enhancer. Moreover, in a family with three histopathologically-diagnosed ACDMPV siblings whose missense FOXF1 mutation was inherited from the healthy non-mosaic carrier mother, we have identified a rare SNV rs28571077-A within 2-kb of the above-mentioned non-coding SNVs in the FOXF1 enhancer in the mother, that was absent in the affected newborns and 13 unrelated ACDMPV patients with CNV deletions of this genomic region. Based on the low population frequencies of these three variants, their absence in ACDMPV patients, the results of reporter assay, RNAi and EMSA experiments, and in silico predictions, we propose that the described SNVs might have acted on FOXF1 enhancer as hypermorphs.


Assuntos
Elementos Facilitadores Genéticos , Fatores de Transcrição Forkhead/genética , Mutação de Sentido Incorreto , Síndrome da Persistência do Padrão de Circulação Fetal/prevenção & controle , Polimorfismo de Nucleotídeo Único , Deleção de Sequência , Adulto , Criança , Feminino , Impressão Genômica , Humanos , Recém-Nascido , Síndrome da Persistência do Padrão de Circulação Fetal/genética , Síndrome da Persistência do Padrão de Circulação Fetal/patologia , Fenótipo , Prognóstico
13.
Am J Hum Genet ; 99(3): 555-566, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27569549

RESUMO

Genomic imprinting is a mechanism in which gene expression varies depending on parental origin. Imprinting occurs through differential epigenetic marks on the two parental alleles, with most imprinted loci marked by the presence of differentially methylated regions (DMRs). To identify sites of parental epigenetic bias, here we have profiled DNA methylation patterns in a cohort of 57 individuals with uniparental disomy (UPD) for 19 different chromosomes, defining imprinted DMRs as sites where the maternal and paternal methylation levels diverge significantly from the biparental mean. Using this approach we identified 77 DMRs, including nearly all those described in previous studies, in addition to 34 DMRs not previously reported. These include a DMR at TUBGCP5 within the recurrent 15q11.2 microdeletion region, suggesting potential parent-of-origin effects associated with this genomic disorder. We also observed a modest parental bias in DNA methylation levels at every CpG analyzed across ∼1.9 Mb of the 15q11-q13 Prader-Willi/Angelman syndrome region, demonstrating that the influence of imprinting is not limited to individual regulatory elements such as CpG islands, but can extend across entire chromosomal domains. Using RNA-seq data, we detected signatures consistent with imprinted expression associated with nine novel DMRs. Finally, using a population sample of 4,004 blood methylomes, we define patterns of epigenetic variation at DMRs, identifying rare individuals with global gain or loss of methylation across multiple imprinted loci. Our data provide a detailed map of parental epigenetic bias in the human genome, providing insights into potential parent-of-origin effects.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Genoma Humano/genética , Pais , Dissomia Uniparental/genética , Alelos , Síndrome de Angelman/genética , Aberrações Cromossômicas , Cromossomos Humanos/genética , Cromossomos Humanos Par 15/genética , Estudos de Coortes , Ilhas de CpG/genética , Feminino , Impressão Genômica/genética , Humanos , Deficiência Intelectual/genética , Cariótipo , Masculino , Proteínas Associadas aos Microtúbulos/genética , Síndrome de Prader-Willi/genética , Reprodutibilidade dos Testes , Análise de Sequência de RNA
15.
Hum Mol Genet ; 25(5): 892-902, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26721934

RESUMO

Recently, we marked TRIO for the first time as a candidate gene for intellectual disability (ID). Across diverse vertebrate species, TRIO is a well-conserved Rho GTPase regulator that is highly expressed in the developing brain. However, little is known about the specific events regulated by TRIO during brain development and its clinical impact in humans when mutated. Routine clinical diagnostic testing identified an intragenic de novo deletion of TRIO in a boy with ID. Targeted sequencing of this gene in over 2300 individuals with ID, identified three additional truncating mutations. All index cases had mild to borderline ID combined with behavioral problems consisting of autistic, hyperactive and/or aggressive behavior. Studies in dissociated rat hippocampal neurons demonstrated the enhancement of dendritic formation by suppressing endogenous TRIO, and similarly decreasing endogenous TRIO in organotypic hippocampal brain slices significantly increased synaptic strength by increasing functional synapses. Together, our findings provide new mechanistic insight into how genetic deficits in TRIO can lead to early neuronal network formation by directly affecting both neurite outgrowth and synapse development.


Assuntos
Transtorno Autístico/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Deficiência Intelectual/genética , Mutação , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/genética , Agitação Psicomotora/genética , Sinapses/metabolismo , Adulto , Animais , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Criança , Feminino , Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/deficiência , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Masculino , Neurogênese , Neurônios/patologia , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/deficiência , Agitação Psicomotora/metabolismo , Agitação Psicomotora/patologia , Ratos , Análise de Sequência de DNA , Índice de Gravidade de Doença , Sinapses/patologia
16.
Genome Res ; 25(6): 802-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25887030

RESUMO

Clusters of functionally related genes can be disrupted by a single copy number variant (CNV). We demonstrate that the simultaneous disruption of multiple functionally related genes is a frequent and significant characteristic of de novo CNVs in patients with developmental disorders (P = 1 × 10(-3)). Using three different functional networks, we identified unexpectedly large numbers of functionally related genes within de novo CNVs from two large independent cohorts of individuals with developmental disorders. The presence of multiple functionally related genes was a significant predictor of a CNV's pathogenicity when compared to CNVs from apparently healthy individuals and a better predictor than the presence of known disease or haploinsufficient genes for larger CNVs. The functionally related genes found in the de novo CNVs belonged to 70% of all clusters of functionally related genes found across the genome. De novo CNVs were more likely to affect functional clusters and affect them to a greater extent than benign CNVs (P = 6 × 10(-4)). Furthermore, such clusters of functionally related genes are phenotypically informative: Different patients possessing CNVs that affect the same cluster of functionally related genes exhibit more similar phenotypes than expected (P < 0.05). The spanning of multiple functionally similar genes by single CNVs contributes substantially to how these variants exert their pathogenic effects.


Assuntos
Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Família Multigênica , Cromossomos Humanos/genética , Análise por Conglomerados , Bases de Dados Genéticas , Deficiências do Desenvolvimento/diagnóstico , Redes Reguladoras de Genes , Genoma Humano , Voluntários Saudáveis , Humanos , Modelos Logísticos , Fenótipo
17.
PLoS Genet ; 11(3): e1005012, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25781962

RESUMO

Readily-accessible and standardised capture of genotypic variation has revolutionised our understanding of the genetic contribution to disease. Unfortunately, the corresponding systematic capture of patient phenotypic variation needed to fully interpret the impact of genetic variation has lagged far behind. Exploiting deep and systematic phenotyping of a cohort of 197 patients presenting with heterogeneous developmental disorders and whose genomes harbour de novo CNVs, we systematically applied a range of commonly-used functional genomics approaches to identify the underlying molecular perturbations and their phenotypic impact. Grouping patients into 408 non-exclusive patient-phenotype groups, we identified a functional association amongst the genes disrupted in 209 (51%) groups. We find evidence for a significant number of molecular interactions amongst the association-contributing genes, including a single highly-interconnected network disrupted in 20% of patients with intellectual disability, and show using microcephaly how these molecular networks can be used as baits to identify additional members whose genes are variant in other patients with the same phenotype. Exploiting the systematic phenotyping of this cohort, we observe phenotypic concordance amongst patients whose variant genes contribute to the same functional association but note that (i) this relationship shows significant variation across the different approaches used to infer a commonly perturbed molecular pathway, and (ii) that the phenotypic similarities detected amongst patients who share the same inferred pathway perturbation result from these patients sharing many distinct phenotypes, rather than sharing a more specific phenotype, inferring that these pathways are best characterized by their pleiotropic effects.


Assuntos
Variações do Número de Cópias de DNA/genética , Deficiências do Desenvolvimento/genética , Redes e Vias Metabólicas/genética , Mapas de Interação de Proteínas/genética , Animais , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Expressão Gênica , Estudos de Associação Genética , Genoma Humano , Genótipo , Humanos , Camundongos , Fenótipo , Mapeamento de Interação de Proteínas
18.
Genet Med ; 19(6): 667-675, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28574513

RESUMO

PURPOSE: Copy-number variation is a common source of genomic variation and an important genetic cause of disease. Microarray-based analysis of copy-number variants (CNVs) has become a first-tier diagnostic test for patients with neurodevelopmental disorders, with a diagnostic yield of 10-20%. However, for most other genetic disorders, the role of CNVs is less clear and most diagnostic genetic studies are generally limited to the study of single-nucleotide variants (SNVs) and other small variants. With the introduction of exome and genome sequencing, it is now possible to detect both SNVs and CNVs using an exome- or genome-wide approach with a single test. METHODS: We performed exome-based read-depth CNV screening on data from 2,603 patients affected by a range of genetic disorders for which exome sequencing was performed in a diagnostic setting. RESULTS: In total, 123 clinically relevant CNVs ranging in size from 727 bp to 15.3 Mb were detected, which resulted in 51 conclusive diagnoses and an overall increase in diagnostic yield of ~2% (ranging from 0 to -5.8% per disorder). CONCLUSIONS: This study shows that CNVs play an important role in a broad range of genetic disorders and that detection via exome-based CNV profiling results in an increase in the diagnostic yield without additional testing, bringing us closer to single-test genomics.Genet Med advance online publication 27 October 2016.


Assuntos
Variações do Número de Cópias de DNA , Exoma , Doenças Genéticas Inatas/genética , Sequenciamento Completo do Genoma , Estudos de Coortes , Genoma Humano , Humanos , Padrões de Herança , Masculino , Polimorfismo de Nucleotídeo Único
19.
Nature ; 478(7367): 97-102, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21881559

RESUMO

Both obesity and being underweight have been associated with increased mortality. Underweight, defined as a body mass index (BMI) ≤ 18.5 kg per m(2) in adults and ≤ -2 standard deviations from the mean in children, is the main sign of a series of heterogeneous clinical conditions including failure to thrive, feeding and eating disorder and/or anorexia nervosa. In contrast to obesity, few genetic variants underlying these clinical conditions have been reported. We previously showed that hemizygosity of a ∼600-kilobase (kb) region on the short arm of chromosome 16 causes a highly penetrant form of obesity that is often associated with hyperphagia and intellectual disabilities. Here we show that the corresponding reciprocal duplication is associated with being underweight. We identified 138 duplication carriers (including 132 novel cases and 108 unrelated carriers) from individuals clinically referred for developmental or intellectual disabilities (DD/ID) or psychiatric disorders, or recruited from population-based cohorts. These carriers show significantly reduced postnatal weight and BMI. Half of the boys younger than five years are underweight with a probable diagnosis of failure to thrive, whereas adult duplication carriers have an 8.3-fold increased risk of being clinically underweight. We observe a trend towards increased severity in males, as well as a depletion of male carriers among non-medically ascertained cases. These features are associated with an unusually high frequency of selective and restrictive eating behaviours and a significant reduction in head circumference. Each of the observed phenotypes is the converse of one reported in carriers of deletions at this locus. The phenotypes correlate with changes in transcript levels for genes mapping within the duplication but not in flanking regions. The reciprocal impact of these 16p11.2 copy-number variants indicates that severe obesity and being underweight could have mirror aetiologies, possibly through contrasting effects on energy balance.


Assuntos
Índice de Massa Corporal , Cromossomos Humanos Par 16/genética , Dosagem de Genes/genética , Obesidade/genética , Fenótipo , Magreza/genética , Adolescente , Adulto , Idoso , Envelhecimento , Estatura/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento/genética , Metabolismo Energético/genética , Europa (Continente) , Feminino , Duplicação Gênica/genética , Perfilação da Expressão Gênica , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Cabeça/anatomia & histologia , Heterozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Transtornos Mentais/genética , Pessoa de Meia-Idade , Mutação/genética , América do Norte , RNA Mensageiro/análise , RNA Mensageiro/genética , Deleção de Sequência/genética , Transcrição Gênica , Adulto Jovem
20.
Nucleic Acids Res ; 42(Database issue): D966-74, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24217912

RESUMO

The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have developed logical definitions for 46% of all HPO classes using terms from ontologies for anatomy, cell types, function, embryology, pathology and other domains. This allows interoperability with several resources, especially those containing phenotype information on model organisms such as mouse and zebrafish. Here we describe the updated HPO database, which provides annotations of 7,278 human hereditary syndromes listed in OMIM, Orphanet and DECIPHER to classes of the HPO. Various meta-attributes such as frequency, references and negations are associated with each annotation. Several large-scale projects worldwide utilize the HPO for describing phenotype information in their datasets. We have therefore generated equivalence mappings to other phenotype vocabularies such as LDDB, Orphanet, MedDRA, UMLS and phenoDB, allowing integration of existing datasets and interoperability with multiple biomedical resources. We have created various ways to access the HPO database content using flat files, a MySQL database, and Web-based tools. All data and documentation on the HPO project can be found online.


Assuntos
Ontologias Biológicas , Bases de Dados Factuais , Doenças Genéticas Inatas/genética , Fenótipo , Animais , Doenças Genéticas Inatas/diagnóstico , Genômica , Humanos , Internet , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA