Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Inflammopharmacology ; 29(1): 193-204, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32996043

RESUMO

Euterpe oleracea Mart., commonly known as açaí, has been demonstrated to exhibit significantly antioxidant and inflammatory activities in experimental models. These effects of the hydroalcoholic extract from the açaí seed (ASE) were investigated in TNBS-induced (2,4,6-trinitrobenzenesulfonic acid) acute colitis model in rats. Wistar rats (180-220 g) were orally pretreated with saline (0.3 mL), ASE (10, 30 and 100 mg/kg) and dexamethasone (control group, 1 mg/kg) once daily for 3 days starting before TNBS instillation. On day 3 after TNBS, the animals were euthanized, the portion of distal colon was collected and washed with 0.9% saline for macroscopy and histological evaluation, glutathione (GSH) and malonyldialdehyde (MDA) levels, myeloperoxidase (MPO) and catalase (CAT) activity, nitrate and nitrite (NO3/NO2) concentration, pro-inflammatory cytokines levels and intestinal barrier integrity. We also evaluated Toll-like Receptor 4/cyclooxygenase-2/nuclear factor kappa B expression as a possible mechanism related to the ASE effects. Treatment with ASE 100 mg/kg decreased significantly macroscopic and microscopic damage induced by TNBS. In addition, MPO activity, TNF-α (tumor necrosis factor-alpha) and IL-1ß (interleukin 1) levels were reduced in rats with colitis. ASE 100 mg/kg restored GSH and MDA levels, CAT activity, NO3/NO2 concentration and improved the intestinal barrier integrity in the TNBS group. ASE 100 mg/kg significantly reduced TNBS-induced expression of the TLR4, COX-2 and NF-κB p65. ASE 100 mg/kg improved macroscopy and histological parameters, inflammation, intestinal barrier integrity and nitric and oxidative stress through the TLR-4/COX-2/NF-κB pathway.


Assuntos
Colite/tratamento farmacológico , Euterpe/química , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Antioxidantes/administração & dosagem , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Colite/fisiopatologia , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inflamação/fisiopatologia , Masculino , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Ratos , Ratos Wistar , Receptor 4 Toll-Like/metabolismo , Ácido Trinitrobenzenossulfônico
2.
Eur J Nutr ; 57(2): 817-832, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28105508

RESUMO

PURPOSE: Euterpe oleracea Mart. (açaí) seed extract (ASE), through its anti-hypertensive, antioxidant and anti-inflammatory properties, may be useful to treat or prevent human diseases. Several evidences suggest that oxidative stress and inflammation contribute to the pathogenesis of diabetic nephropathy; therefore, we tested the hypothesis that ASE (200 mg/kg-1day-1) prevents diabetes and hypertension-related oxidative stress and inflammation, attenuating renal injury. METHODS: Male rats with streptozotocin (STZ)-induced diabetes (D), and spontaneously hypertensive rats with STZ-induced diabetes (DH) were treated daily with tap water or ASE (D + ASE and DH + ASE, respectively) for 45 days. The control (C) and hypertensive (H) animals received water. RESULTS: The elevated serum levels of urea and creatinine in D and DH, and increased albumin excretion in HD were reduced by ASE. Total glomeruli number in D and DH, were increased by ASE that also reduced renal fibrosis in both groups by decreasing collagen IV and TGF-ß1 expression. ASE improved biomarkers of renal filtration barrier (podocin and nephrin) in D and DH groups and prevented the increased expression of caspase-3, IL-6, TNF-α and MCP-1 in both groups. ASE reduced oxidative damage markers (TBARS, carbonyl levels and 8-isoprostane) in D and DH associated with a decrease in Nox 4 and p47 subunit expression and increase in antioxidant enzyme activity in both groups (SOD, catalase and GPx). CONCLUSION: ASE substantially reduced renal injury and prevented renal dysfunction by reducing inflammation, oxidative stress and improving the renal filtration barrier, providing a nutritional resource for prevention of diabetic and hypertensive-related nephropathy.


Assuntos
Antioxidantes/uso terapêutico , Nefropatias Diabéticas/prevenção & controle , Suplementos Nutricionais , Euterpe/química , Extratos Vegetais/uso terapêutico , Insuficiência Renal/prevenção & controle , Sementes/química , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Apoptose , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Experimental/imunologia , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Fibrose , Barreira de Filtração Glomerular/imunologia , Barreira de Filtração Glomerular/metabolismo , Barreira de Filtração Glomerular/patologia , Barreira de Filtração Glomerular/fisiopatologia , Hipertensão/complicações , Hipertensão/dietoterapia , Hipertensão/imunologia , Hipertensão/fisiopatologia , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Rim/imunologia , Rim/metabolismo , Rim/patologia , Rim/fisiopatologia , Estresse Oxidativo , Ratos Endogâmicos SHR , Insuficiência Renal/complicações , Insuficiência Renal/etiologia , Insuficiência Renal/metabolismo
3.
BMC Complement Altern Med ; 18(1): 116, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29609579

RESUMO

BACKGROUND: Among the processes involved in the breast tumor microenvironment, angiogenesis and inflammation play a central role, and the main factors of these processes are the vascular endothelial growth factor (VEGF), cyclooxygenase 2 (COX-2) and macrophages. Recently, the extract of Euterpe oleracea (açaí), a fruit that is widely found in the Amazon region, already showed antitumorigenic effects in vitro in human breast cancer cell lines. The present study aimed to investigate the effect of açaí on breast cancer using a chemically DMBA (7,12-dimethylbenzanthracene) experimental model. METHODS: One day after initiation of treatment with açaí, mammary carcinogenesis was induced in female Wistar rats using a subcutaneous injection of 25 mg/kg of DMBA in the mammary gland. Forty rats were randomized into two groups: treated with 200 mg/kg of either açaí extract or vehicle, via gastric tube for 16 consecutive weeks. After treatment, the tumor was collected for macroscopic, histological and immunohistochemical (VEGF, vascular endothelial growth factor receptor 2 -VEGFR-2, COX-2 and matrix metalloproteinase -MMP-9) analyses; peritoneal fluid was subjected to flow cytometry (F4-80/MAC-2+) and ELISA immunoassay (VEGF, prostaglandin E2 -PGE2 and interleukin-10 -IL-10). Heart, liver and kidney samples were collected for histological analysis. RESULTS: After 16 weeks of induction, the mammary carcinoma was confirmed by macroscopic and histological evaluation. Survival analysis indicates that açaí increased the survival (P = .0002, long-rank test) and reduced the deaths number (P = .0036, Chi-square test). Açaí treatment decreased the number of inflammatory cells and macrophage positive cells (Mac-2 + F4-80+), as well as promoting a reduction in immunostaining of VEGF, VEGFR-2 and COX-2. The açaí group also exhibited lower concentrations of PGE2, VEGF and IL-10 compared to the control. The histopathological results of the liver and kidneys showed protective effect of açaí, since in the control group, there was an increase in fibrosis, atypical cells and hemorrhagic microenvironment. CONCLUSION: The results of this study demonstrated the antiangiogenic and anti-inflammatory potential of açaí, like due to the decreases of the number of activated macrophages, resulting in the inhibition of DMBA carcinogenicity in breast cancer.


Assuntos
9,10-Dimetil-1,2-benzantraceno/toxicidade , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Carcinógenos/toxicidade , Euterpe/química , Neoplasias Mamárias Experimentais , Extratos Vegetais/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Ratos , Ratos Wistar
4.
Phytother Res ; 31(10): 1621-1632, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28840618

RESUMO

We hypothesized that a polyphenol-rich extract from Vitis vinifera L. grape skin (GSE) may exert beneficial effects on obesity and related metabolic disorders induced by a high-fat diet (HFD). C57/BL6 mice were fed a standard diet (10% fat, control, and GSE groups) or an HFD (60% fat, high fat (HF), and HF + GSE) with or without GSE (200 mg/kg/day) for 12 weeks. GSE prevented weight gain; dyslipidemia; insulin resistance; the alterations in plasma levels of leptin, adiponectin, and resistin; and the deregulation of leptin and adiponectin expression in adipose tissue. These beneficial effects of GSE may be related to a positive modulation of insulin signaling proteins (IR, pIRS, PI3K, pAKT), pAMPK/AMPK ratio, and GLUT4 expression in muscle and adipose tissue. In addition, GSE prevented the oxidative damage, evidenced by the restoration of antioxidant activity and decrease of malondialdehyde and carbonyl levels in muscle and adipose tissue. Finally, GSE showed an anti-inflammatory action, evidenced by the reduced plasma and adipose tissue inflammatory markers (TNF-α, IL-6). Our results suggest that GSE prevented the obesity and related metabolic disorders in HF-fed mice by regulating insulin sensitivity and GLUT4 expression as well as by preventing the oxidative stress and inflammation in skeletal muscle and adipose tissue. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Antocianinas/farmacologia , Músculo Esquelético/efeitos dos fármacos , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Vitis/química , Adiponectina/sangue , Tecido Adiposo/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Peso Corporal , Dieta Hiperlipídica , Frutas/química , Transportador de Glucose Tipo 4/metabolismo , Inflamação/tratamento farmacológico , Insulina/sangue , Resistência à Insulina , Interleucina-6/metabolismo , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Polifenóis/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Eur J Nutr ; 55(4): 1455-64, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26096720

RESUMO

PURPOSE: Protein-restricted diet during pregnancy is related to oxidative stress and, as a consequence, damage to nephrogenesis. We investigated the effects of vinifera grape skin extract (ACH09)-derived polyphenols on preserving renal morphology of maternal protein-restricted 1-day-old offspring. METHODS: Female C57/Bl-6 mice were fed two different isocaloric diets: control diet (19.3 % protein) and low-protein diet (6 % protein) with access to water or to the extract dissolved in drinking water (19.3 % protein plus ACH09 200 mg kg(-1) day(-1) and 6 % protein plus ACH09 200 mg kg(-1) day(-1)) throughout gestation. Renal morphology-glomerular number N[glom]; renal maturity-vascular glomeruli and avascular glomeruli ratio (v-N[glom]/a-N[glom]); medullar and cortical volumes, as well as mean glomerular volume, were analyzed in male offspring. Hepatic superoxide dismutase and catalase (CAT) activities were evaluated, and renal lipid peroxidation levels were measured. RESULTS: Maternal protein restriction affected birth weight and naso-anal length in low-protein offspring compared to control and ACH09 restored both parameters. Protein restriction increased lipid peroxidation in kidney and liver and reduced CAT activity in low-protein group compared to control. Supplementation with ACH09 reduced the kidney oxidative damage and restored the antioxidant activity of CAT. ACH09 prevented glomerular loss and renal immaturity in the offspring. CONCLUSION: The treatment of low-protein-fed dams during pregnancy with ACH09 provides protection from early-life deleterious renal morphological changes. The protective effect of ACH09 may involve antioxidant action and vasodilator effect of the extract.


Assuntos
Dieta com Restrição de Proteínas , Rim/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Materna , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Vitis/química , Animais , Catalase/metabolismo , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Fibras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Feminino , Rim/metabolismo , Nefropatias/prevenção & controle , Modelos Lineares , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Superóxido Dismutase/metabolismo
6.
BMC Complement Altern Med ; 14: 175, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24886139

RESUMO

BACKGROUND: Euterpe oleracea Mart., a plant from the Amazon region, is commonly known as açaí or juçara; it has high nutritional value and elevated levels of lipids, proteins, and minerals. Açaí is an abundant and much consumed fruit by the Amazon local population, and studies have demonstrated that it is rich in phytochemicals with antioxidant, anti-inflammatory, and anticancer activities. Therefore, the aim of this study was to test this plant for anticancer activity in different human malignant cell lines. METHODS: Cell lines derived from breast and colorectal adenocarcinomas were treated with 10, 20, and 40 µg/mL of bark, seed, and total açaí fruit hydroalcoholic extracts for 24 and 48 h. After treatment, cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and cell morphological features were observed by light and transmission electron microscopy. The type of cell death was also evaluated. The data were analyzed statistically by one-way analysis of variance (ANOVA), followed by Dunnett's or Tukey's post hoc tests, as appropriate. RESULTS: We observed that of all the cell lines tested, MCF-7 was the only line that responded to açaí treatment. The extracts caused significant reduction (p<0.01) in cell viability and altered cell morphological features by inducing the appearance of autophagic vacuoles, as observed by transmission electron microscopy. Furthermore, increased expression of LC3BII, a protein marker of autophagosome formation, was observed by western blotting. Caspase Glo™ assays and morphologic observations by DAPI nuclear staining and transmission electron microscopy did not indicate any apoptotic events. CONCLUSIONS: The present study demonstrated that açaí possesses antitumorigenic potential in the MCF-7 cell line. Further studies are needed to identify the compound (s) responsible for this cytotoxic activity and the molecular target in the cell. This discovery of the anticancer potential of açaí may help in the development of chemopreventive drugs and may have therapeutic effects in the treatment of breast cancer.


Assuntos
Antineoplásicos Fitogênicos/análise , Euterpe/química , Antineoplásicos Fitogênicos/farmacologia , Arecaceae/química , Autofagia/efeitos dos fármacos , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Frutas/química , Humanos , Células MCF-7 , Microscopia Eletrônica de Transmissão , Minerais , Valor Nutritivo , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Polifenóis/análise , Sementes/química
7.
Nutr Res ; 125: 1-15, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428258

RESUMO

Açaí seed extract (ASE) is obtained from Euterpe oleracea Mart. (açaí) plant (Amazon region) has high nutritional and functional value. ASE is rich in polyphenolic compounds, mainly proanthocyanidins. Proanthocyanidins can modulate the immune system and oxidative stress by inhibiting the toll-like receptor-4 (TLR-4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor-κB (NF-κB) pathway. A great deal of evidence suggests that inflammatory cytokines and oxidative stress contribute to the pathogenesis of intestinal mucositis, and these events can lead to intestinal dysmotility. We hypothesized that ASE acts as an anti-inflammatory and antioxidant compound in intestinal mucositis induced by 5-fluorouracil (5-FU) through modulation of the TLR-4/MyD88/phosphatidylinositol-3-kinase α/mechanistic target of rapamycin/NF-κBp65 pathway. The animals were divided into linear 5-FU (450 mg/kg) and 5-FU + ASE (10, 30, and 100 mg/kg) groups. The weight loss of the animals was evaluated daily. Samples from duodenum, jejunum, and ileum were obtained for histopathological, biochemical, and functional analyses. ASE reduced weight loss, inflammatory parameters (interleukin-1ß; tumor necrosis factor-α; myeloperoxidase activity) and the gene expression of mediators involved in the TLR-2/MyD88/NF-κB pathway. ASE prevented histopathological changes with beneficial effects on gastrointestinal transit delay, gastric emptying, and intestinal absorption/permeability. In conclusion, ASE protects the integrity of the intestinal epithelial barrier by inhibiting the TLR/MyD88/PI3K/mechanistic target of rapamycin/NF-κBp65 pathway.


Assuntos
Euterpe , Fluoruracila , Mucosite , Fator 88 de Diferenciação Mieloide , Extratos Vegetais , Polifenóis , Sementes , Transdução de Sinais , Serina-Treonina Quinases TOR , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/prevenção & controle , Mucosite/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sementes/química , Polifenóis/farmacologia , Masculino , Euterpe/química , Camundongos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Fator de Transcrição RelA/metabolismo , Antioxidantes/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo
8.
BMC Complement Med Ther ; 23(1): 301, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626388

RESUMO

BACKGROUND: Açaí, a Brazilian native fruit, has already been demonstrated to play a role in the progress of breast cancer and cardiotoxicity promoted by chemotherapy agents. Thus, the present study aimed to evaluate the combined use of açaí and the FAC-D chemotherapy protocol in a breast cancer model in vivo. METHODS: Mammary carcinogenesis was induced in thirty female Wistar rats by subcutaneous injection of 25 mg/kg 7,12-dimethylbenzanthracene (DMBA) in the mammary gland. After sixty days, the rats were randomized into two groups: treated with 200 mg/kg of either açaí extract or vehicle, via gastric tube for 45 consecutive days. The FAC-D protocol was initiated after 90 days of induction by intraperitoneal injection for 3 cycles with a 7-day break each. After treatment, blood was collected for haematological and biochemical analyses, and tumours were collected for macroscopic and histological analyses. In the same way, heart, liver, and kidney samples were also collected for macroscopic and histological analyses. RESULTS: Breast cancer was found as a cystic mass with a fibrotic pattern in the mammary gland. The histological analysis showed an invasive carcinoma area in both groups; however, in the saline group, there was a higher presence of inflammatory clusters. No difference was observed regarding body weight, glycaemia, aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, and urea in either group. However, açaí treatment decreased creatine kinase (CK), creatine kinase MB (CKMB), troponin I and C-reactive protein levels and increased the number of neutrophils and monocytes. Heart histopathology showed normal myocardium in the açaí treatment, while the saline group presented higher toxicity effects with loss of architecture of cardiac tissue. Furthermore, the açaí treatment presented greater collagen distribution, increased hydroxyproline concentration and lower H2AX immunostaining in the heart samples. CONCLUSION: Açaí decreased the number of inflammatory cells in the tumor environment and exhibited protection against chemotherapy drug cardiotoxicity with an increased immune response in animals. Thus, açaí can be considered a promising low-cost therapeutic treatment that can be used in association with chemotherapy agents to avoid heart damage.


Assuntos
Euterpe , Neoplasias , Feminino , Animais , Ratos , Ratos Wistar , Cardiotoxicidade , Coração , Creatina Quinase
9.
Chem Biol Interact ; 351: 109721, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34715092

RESUMO

Obesity is recognized as an independent risk factor for cardiovascular diseases and is an important contributor to cardiac mortality. Açaí seed extract (ASE), rich in proanthocyanidins, has been shown to have potential anti-obesity effects. This study aimed to investigate the therapeutic effect of ASE in cardiovascular remodeling associated with obesity and compare it with that of rosuvastatin. Male C57BL/6 mice were fed a high-fat diet or a standard diet for 12 weeks. The ASE (300 mg/kg/day) and rosuvastatin (20 mg/kg/day) treatments started in the 8th week until the 12th week, totaling 4 weeks of treatment. Our data showed that treatment with ASE and rosuvastatin reduced body weight, ameliorated lipid profile, and improved cardiovascular remodeling. Treatment with ASE but not rosuvastatin reduced hyperglycemia and oxidative stress by reducing immunostaining of 8-isoprostane and increasing SOD-1 and GPx expression in HFD mice. ASE and rosuvastatin reduced NOX4 expression, increased SIRT-1 and Nrf2 expression and catalase and GPx activities, and improved vascular and cardiac remodeling in HFD mice. The therapeutic effect of ASE was similar to that of rosuvastatin in reducing dyslipidemia and cardiovascular remodeling but was superior in reducing oxidative damage and hyperglycemia, suggesting that ASE was a promising natural product for the treatment of cardiovascular alterations associated with obesity.


Assuntos
Antioxidantes/uso terapêutico , Cardiomegalia/tratamento farmacológico , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Remodelação Ventricular/efeitos dos fármacos , Animais , Cardiomegalia/etiologia , Dieta Hiperlipídica , Euterpe/química , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/complicações , Proantocianidinas/uso terapêutico , Sementes/química
10.
J Cardiovasc Pharmacol ; 58(3): 319-28, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21697730

RESUMO

This study examined the effect of Vitis vinifera grape skin ACH09 extract (ACH09) on metabolic disorders and oxidative stress in adult offspring of rats fed a high-fat diet (HF) during lactation. Four groups of female rats were fed: control diet (7% fat); ACH09 (7% fat + 200 mg·kg·d ACH09 orally); HF (24% fat); HF+ ACH09 (24% fat + 200 mg·kg·d ACH09 orally) during lactation. From weaning onward, all female offspring were fed a control diet and killed when they were 90 or 180 days old. Systolic blood pressure was increased in adult offspring of HF-fed dams, and ACH09 prevented hypertension. Increased adiposity, plasma triglyceride, glucose levels, and insulin resistance were observed in offspring from both ages, and these changes were reversed by ACH09. The plasma oxidative damage assessed by malondialdehyde levels was increased, and nitrite levels decreased in the HF group of both ages, which were reversed by ACH09. In addition, ACH09 restored the decreased plasma and mesenteric artery antioxidant activities of superoxide dismutase, catalase, and glutathione peroxidase in the HF group. In conclusion, ACH09 protected normally fed offspring of HF-fed dams during lactation from phenotypic and metabolic characteristics of metabolic syndrome providing an alternative nutritional resource for the prevention of metabolic syndrome.


Assuntos
Antioxidantes/farmacologia , Doenças Metabólicas/prevenção & controle , Síndrome Metabólica/prevenção & controle , Estresse Oxidativo , Fitoterapia , Extratos Vegetais/farmacologia , Vitis , Animais , Antioxidantes/análise , Pressão Sanguínea , Peso Corporal , Dieta Hiperlipídica , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Frutas , Resistência à Insulina , Lactação , Peroxidação de Lipídeos , Lipídeos/sangue , Masculino , Síndrome Metabólica/fisiopatologia , Extratos Vegetais/análise , Gravidez , Ratos , Ratos Wistar , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA