Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 117(11): 113001, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27661683

RESUMO

The combination of electromagnetically induced transparency with the nonlinear interaction between Rydberg atoms provides an effective interaction between photons. In this Letter, we investigate the storage of optical pulses as collective Rydberg atomic excitations in a cold atomic ensemble. By measuring the dynamics of the stored Rydberg polaritons, we experimentally demonstrate that storing a probe pulse as Rydberg polaritons strongly enhances the Rydberg mediated interaction compared to the slow propagation case. We show that the process is characterized by two time scales. At short storage times, we observe a strong enhancement of the interaction due to the reduction of the Rydberg polariton group velocity down to 0. For longer storage times, we observe a further, weaker enhancement dominated by Rydberg induced dephasing of the multiparticle components of the state. In this regime, we observe a nonlinear dependence of the Rydberg polariton coherence time with the input photon number. Our results have direct consequences in Rydberg quantum optics and may enable the test of new theories of strongly interacting Rydberg systems.

2.
Nature ; 438(7069): 828-32, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16341008

RESUMO

A critical requirement for diverse applications in quantum information science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum memory (for storing the states) can enable scalable architectures for quantum computation, communication and metrology. Here we report observations of entanglement between two atomic ensembles located in distinct, spatially separated set-ups. Quantum interference in the detection of a photon emitted by one of the samples projects the otherwise independent ensembles into an entangled state with one joint excitation stored remotely in 10(5) atoms at each site. After a programmable delay, we confirm entanglement by mapping the state of the atoms to optical fields and measuring mutual coherences and photon statistics for these fields. We thereby determine a quantitative lower bound for the entanglement of the joint state of the ensembles. Our observations represent significant progress in the ability to distribute and store entangled quantum states.

3.
Phys Rev Lett ; 99(17): 173602, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17995330

RESUMO

High-visibility interference of photon echoes generated in spatially separated solid-state atomic ensembles is demonstrated. The solid-state ensembles were LiNbO(3) waveguides doped with erbium ions absorbing at 1.53 microm. Bright coherent states of light in several temporal modes (up to 3) are stored and retrieved from the optical memories using two-pulse photon echoes. The stored and retrieved optical pulses, when combined at a beam splitter, show almost perfect interference, which demonstrates both phase preserving storage and indistinguishability of photon echoes from separate optical memories. By measuring interference fringes for different storage times, we also show explicitly that the visibility is not limited by atomic decoherence. These results are relevant for novel quantum-repeater architectures with photon-echo based multimode quantum memories.

4.
Phys Rev Lett ; 97(11): 113603, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17025884

RESUMO

Violations of a Bell inequality are reported for an experiment where one of two entangled qubits is stored in a collective atomic memory for a user-defined time delay. The atomic qubit is found to preserve the violation of a Bell inequality for storage times up to 21 micros, 700 times longer than the duration of the excitation pulse that creates the entanglement. To address the question of the security of entanglement-based cryptography implemented with this system, an investigation of the Bell violation as a function of the cross correlation between the generated nonclassical fields is reported, with saturation of the violation close to the maximum value allowed by quantum mechanics.

5.
Phys Rev Lett ; 92(4): 047904, 2004 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-14995410

RESUMO

A long distance quantum teleportation experiment with a fiber-delayed Bell state measurement (BSM) is reported. The source creating the qubits to be teleported and the source creating the necessary entangled state are connected to the beam splitter realizing the BSM by two 2 km long optical fibers. In addition, the teleported qubits are analyzed after 2.2 km of optical fiber, in another laboratory separated by 55 m. Time-bin qubits carried by photons at 1310 nm are teleported onto photons at 1550 nm. The fidelity is of 77%, above the maximal value obtainable without entanglement. This is the first realization of an elementary quantum relay over significant distances, which will allow an increase in the range of quantum communication and quantum key distribution.

6.
Nature ; 421(6922): 509-13, 2003 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-12556886

RESUMO

Matter and energy cannot be teleported (that is, transferred from one place to another without passing through intermediate locations). However, teleportation of quantum states (the ultimate structure of objects) is possible: only the structure is teleported--the matter stays at the source side and must be already present at the final location. Several table-top experiments have used qubits (two-dimensional quantum systems) or continuous variables to demonstrate the principle over short distances. Here we report a long-distance experimental demonstration of probabilistic quantum teleportation. Qubits carried by photons of 1.3 micro m wavelength are teleported onto photons of 1.55 micro m wavelength from one laboratory to another, separated by 55 m but connected by 2 km of standard telecommunications fibre. The first (and, with foreseeable technologies, the only) application of quantum teleportation is in quantum communication, where it could help to extend quantum cryptography to larger distances.

7.
Phys Rev Lett ; 93(18): 180502, 2004 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-15525142

RESUMO

We report experimental distribution of time-bin entangled qubits over 50 km of optical fibers. Using actively stabilized preparation and measurement devices we demonstrate violation of the Clauser-Horne-Shimony-Holt Bell inequality by more than 15 standard deviations without removing the detector noise. In addition we report a proof-of principle experiment of quantum key distribution over 50 km of optical fibers using entangled photon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA