Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Mol Genet Genomics ; 298(3): 735-754, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37017807

RESUMO

Trichoderma atroviride and Trichoderma harzianum are widely used as commercial biocontrol agents against plant diseases. Recently, T. harzianum IOC-3844 (Th3844) and T. harzianum CBMAI-0179 (Th0179) demonstrated great potential in the enzymatic conversion of lignocellulose into fermentable sugars. Herein, we performed whole-genome sequencing and assembly of the Th3844 and Th0179 strains. To assess the genetic diversity within the genus Trichoderma, the results of both strains were compared with strains of T. atroviride CBMAI-00020 (Ta0020) and T. reesei CBMAI-0711 (Tr0711). The sequencing coverage value of all genomes evaluated in this study was higher than that of previously reported genomes for the same species of Trichoderma. The resulting assembly revealed total lengths of 40 Mb (Th3844), 39 Mb (Th0179), 36 Mb (Ta0020), and 32 Mb (Tr0711). A genome-wide phylogenetic analysis provided details on the relationships of the newly sequenced species with other Trichoderma species. Structural variants revealed genomic rearrangements among Th3844, Th0179, Ta0020, and Tr0711 relative to the T. reesei QM6a reference genome and showed the functional effects of such variants. In conclusion, the findings presented herein allow the visualization of genetic diversity in the evaluated strains and offer opportunities to explore such fungal genomes in future biotechnological and industrial applications.


Assuntos
Trichoderma , Filogenia , Trichoderma/genética , Genômica
2.
Theor Appl Genet ; 136(11): 238, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919432

RESUMO

KEY MESSAGE: We present the highest-density genetic map for the hexaploid Urochloa humidicola. SNP markers expose genetic organization, reproduction, and species origin, aiding polyploid and tropical forage research. Tropical forage grasses are an important food source for animal feeding, with Urochloa humidicola, also known as Koronivia grass, being one of the main pasture grasses for poorly drained soils in the tropics. However, genetic and genomic resources for this species are lacking due to its genomic complexity, including high heterozygosity, evidence of segmental allopolyploidy, and reproduction by apomixis. These complexities hinder the application of marker-assisted selection (MAS) in breeding programs. Here, we developed the highest-density linkage map currently available for the hexaploid tropical forage grass U. humidicola. This map was constructed using a biparental F1 population generated from a cross between the female parent H031 (CIAT 26146), the only known sexual genotype for the species, and the apomictic male parent H016 (BRS cv. Tupi). The linkage analysis included 4873 single nucleotide polymorphism (SNP) markers with allele dosage information. It allowed mapping of the ASGR locus and apospory phenotype to linkage group 3, in a region syntenic with chromosome 3 of Urochloa ruziziensis and chromosome 1 of Setaria italica. We also identified hexaploid haplotypes for all individuals, assessed the meiotic configuration, and estimated the level of preferential pairing in parents during the meiotic process, which revealed the autopolyploid origin of sexual H031 in contrast to apomictic H016, which presented allopolyploid behavior in preferential pairing analysis. These results provide new information regarding the genetic organization, mode of reproduction, and allopolyploid origin of U. humidicola, potential SNPs markers associated with apomixis for MAS and resources for research on polyploids and tropical forage grasses.


Assuntos
Apomixia , Humanos , Feminino , Masculino , Apomixia/genética , Melhoramento Vegetal , Poaceae/genética , Poliploidia , Genômica
3.
Biochem Genet ; 59(1): 219-234, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32980958

RESUMO

Polyploidy is a phenomenon that alters the genetic diversity of populations and has been reported as one of the most important evolutionary forces for plant diversification. The Psidium cattleyanum complex comprises a group of wild populations with several ploidy levels reported in the literature. The multiple cytotypes, associated with its wide distribution area, make this species a potential key model for understanding evolutionary processes related to polyploidization. In this study, we isolated and characterized nuclear microsatellite markers of P. cattleyanum and tested their transferability to other nine species of the genus. We performed a preliminary analysis of genetic diversity and population structure in three populations of P. cattleyanum. The three populations analyzed had different chromosome numbers, being polyploid cytotypes (2n = 6x = 66, 2n = 7x = 77 and 2n = 8x = 88). We designed 46 primer pairs and successfully amplified 37 markers, from which the 10 best were selected for analysis. Considering both the PIC and DP values, most of markers were highly informative. The new SSR markers were used to assess the levels of genetic diversity of the populations and detected one population with predominance of sexual reproduction. DAPC analysis pointed the formation of three groups, which corresponded to the populations analyzed. The markers were successfully amplified in related species, with some species presenting 80% transferability. By producing this panel of polymorphic microsatellites, we contribute to the understanding evolution in groups of natural polyploids for future studies.


Assuntos
Genes de Plantas , Variação Genética , Genética Populacional , Repetições de Microssatélites , Ploidias , Psidium/genética , DNA de Plantas/genética , Biblioteca Gênica , Marcadores Genéticos , Espécies Introduzidas , Polimorfismo Genético , Poliploidia , Especificidade da Espécie
4.
Exp Appl Acarol ; 83(1): 1-12, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33200337

RESUMO

Phytoseiid mites are efficient predators of mites and small pest insects. Understanding the dispersion and distribution pattern of phytoseiid mites is essential to promote the conservation of these natural enemies and support their use in biological control. Population genetic studies using molecular markers such as microsatellites have proved to be extremely informative to address questions about population structure and dispersion patterns of predatory mites. The objective of this work was to develop specific microsatellite markers for the predatory mite Phytoseiulus macropilis, aiming at improving field dispersion studies. For this purpose, the genomic DNA was extracted from the whole body of a pool of 260 adult females and used to build the genomic microsatellites-enriched library, using biotinylated probes (CT)8 and (GT)8. In total 26 pairs of primers were synthesized and screened across 30 adult females of P. macropilis for characterization. Seven loci were polymorphic, revealing from two to six alleles per locus. Cross amplifications were successfully obtained in the species Phytoseiulus persimilis, Amblyseius swirskii and Proprioseiopsis sp. The molecular markers obtained are the first developed for P. macropilis-they are effective for the detection and quantification of genetic variation, and show high transferability, thus can be used in genetic and molecular studies of this and other species of the same genus and also of close genera.


Assuntos
Ácaros , Animais , Feminino , Repetições de Microssatélites , Ácaros/genética , Controle Biológico de Vetores , Comportamento Predatório
5.
BMC Plant Biol ; 18(1): 223, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305095

RESUMO

BACKGROUND: Rubber tree is cultivated in mainly Southeast Asia and is by far the most significant source of natural rubber production worldwide. However, the genetic architecture underlying the primary agronomic traits of this crop has not been widely characterized. This study aimed to identify quantitative trait loci (QTLs) associated with growth and latex production using a biparental population established in suboptimal growth conditions in Brazil. RESULTS: A full-sib population composed of 251 individuals was developed from crossing two high-producing Asiatic rubber tree cultivars, PR 255 and PB 217. This mapping population was genotyped with microsatellite markers from enriched genomic libraries or transcriptome datasets and single-nucleotide polymorphism (SNP) markers, leading to construction of a saturated multipoint integrated genetic map containing 354 microsatellite and 151 SNP markers. Height and circumference measurements repeated over a six-year period and registration of cumulative latex production during six consecutive months on the same individuals allowed in-depth characterization of the genetic values of several growth traits and precocious latex production. Growth traits, circumference and height, were overall positively correlated, whereas latex production was not correlated or even negatively correlated with growth traits. A total of 86 distinct QTLs were identified, most of which were detected for only one trait. Among these QTLs, 15 were linked to more than one phenotypic trait (up to 4 traits simultaneously). Latex production and circumference increments during the last wintering period were associated with the highest numbers of identified QTLs (eleven and nine, respectively), jointly explaining the most significantly observed phenotypic variances (44.1% and 44.4%, respectively). The most important QTL for latex production, located on linkage group 16, had an additive effect of the male parent PB 217 and corresponded to a QTL at the same position detected in a previous study carried out in Thailand for the biparental population RRIM 600 x PB 217. CONCLUSIONS: Our results identified a set of significant QTLs for rubber tree, showing that the performance of modern Asiatic cultivars can still be improved and paving the way for further marker-assisted selection, which could accelerate breeding programs.


Assuntos
Hevea/genética , Látex/metabolismo , Locos de Características Quantitativas , Brasil , Clima , Hevea/metabolismo , Repetições de Microssatélites , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
Proteins ; 85(10): 1931-1943, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28677327

RESUMO

Xylella fastidiosa is a xylem-limited bacterium that infects a wide variety of plants. Stationary phase survival protein E is classified as a nucleotidase, which is expressed when bacterial cells are in the stationary growth phase and subjected to environmental stresses. Here, we report four refined X-ray structures of this protein from X. fastidiosa in four different crystal forms in the presence and/or absence of the substrate 3'-AMP. In all chains, the conserved loop verified in family members assumes a closed conformation in either condition. Therefore, the enzymatic mechanism for the target protein might be different of its homologs. Two crystal forms exhibit two monomers whereas the other two show four monomers in the asymmetric unit. While the biological unit has been characterized as a tetramer, differences of their sizes and symmetry are remarkable. Four conformers identified by Small-Angle X-ray Scattering (SAXS) in a ligand-free solution are related to the low frequency normal modes of the crystallographic structures associated with rigid body-like protomer arrangements responsible for the longitudinal and symmetric adjustments between tetramers. When the substrate is present in solution, only two conformers are selected. The most prominent conformer for each case is associated to a normal mode able to elongate the protein by moving apart two dimers. To our knowledge, this work was the first investigation based on the normal modes that analyzed the quaternary structure variability for an enzyme of the SurE family followed by crystallography and SAXS validation. The combined results raise new directions to study allosteric features of XfSurE protein.


Assuntos
Proteínas de Bactérias/química , Plantas/microbiologia , Xylella/química , Cristalografia por Raios X , Espalhamento a Baixo Ângulo , Xylella/patogenicidade
7.
BMC Genomics ; 18(1): 779, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29025413

RESUMO

BACKGROUND: Trichoderma harzianum is used in biotechnology applications due to its ability to produce powerful enzymes for the conversion of lignocellulosic substrates into soluble sugars. Active enzymes involved in carbohydrate metabolism are defined as carbohydrate-active enzymes (CAZymes), and the most abundant family in the CAZy database is the glycoside hydrolases. The enzymes of this family play a fundamental role in the decomposition of plant biomass. RESULTS: In this study, the CAZymes of T. harzianum were identified and classified using bioinformatic approaches after which the expression profiles of all annotated CAZymes were assessed via RNA-Seq, and a phylogenetic analysis was performed. A total of 430 CAZymes (3.7% of the total proteins for this organism) were annotated in T. harzianum, including 259 glycoside hydrolases (GHs), 101 glycosyl transferases (GTs), 6 polysaccharide lyases (PLs), 22 carbohydrate esterases (CEs), 42 auxiliary activities (AAs) and 46 carbohydrate-binding modules (CBMs). Among the identified T. harzianum CAZymes, 47% were predicted to harbor a signal peptide sequence and were therefore classified as secreted proteins. The GH families were the CAZyme class with the greatest number of expressed genes, including GH18 (23 genes), GH3 (17 genes), GH16 (16 genes), GH2 (13 genes) and GH5 (12 genes). A phylogenetic analysis of the proteins in the AA9/GH61, CE5 and GH55 families showed high functional variation among the proteins. CONCLUSIONS: Identifying the main proteins used by T. harzianum for biomass degradation can ensure new advances in the biofuel production field. Herein, we annotated and characterized the expression levels of all of the CAZymes from T. harzianum, which may contribute to future studies focusing on the functional and structural characterization of the identified proteins.


Assuntos
Biocombustíveis , Metabolismo dos Carboidratos , Biologia Computacional , Trichoderma/enzimologia , Celulose/metabolismo , Perfilação da Expressão Gênica , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Anotação de Sequência Molecular , Polissacarídeos/metabolismo
8.
BMC Genomics ; 18(1): 72, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28077090

RESUMO

BACKGROUND: Sugarcane (Saccharum spp.) is predominantly an autopolyploid plant with a variable ploidy level, frequent aneuploidy and a large genome that hampers investigation of its organization. Genetic architecture studies are important for identifying genomic regions associated with traits of interest. However, due to the genetic complexity of sugarcane, the practical applications of genomic tools have been notably delayed in this crop, in contrast to other crops that have already advanced to marker-assisted selection (MAS) and genomic selection. High-throughput next-generation sequencing (NGS) technologies have opened new opportunities for discovering molecular markers, especially single nucleotide polymorphisms (SNPs) and insertion-deletion (indels), at the genome-wide level. The objectives of this study were to (i) establish a pipeline for identifying variants from genotyping-by-sequencing (GBS) data in sugarcane, (ii) construct an integrated genetic map with GBS-based markers plus target region amplification polymorphisms and microsatellites, (iii) detect QTLs related to yield component traits, and (iv) perform annotation of the sequences that originated the associated markers with mapped QTLs to search putative candidate genes. RESULTS: We used four pseudo-references to align the GBS reads. Depending on the reference, from 3,433 to 15,906 high-quality markers were discovered, and half of them segregated as single-dose markers (SDMs) on average. In addition to 7,049 non-redundant SDMs from GBS, 629 gel-based markers were used in a subsequent linkage analysis. Of 7,678 SDMs, 993 were mapped. These markers were distributed throughout 223 linkage groups, which were clustered in 18 homo(eo)logous groups (HGs), with a cumulative map length of 3,682.04 cM and an average marker density of 3.70 cM. We performed QTL mapping of four traits and found seven QTLs. Our results suggest the presence of a stable QTL across locations. Furthermore, QTLs to soluble solid content (BRIX) and fiber content (FIB) traits had markers linked to putative candidate genes. CONCLUSIONS: This study is the first to report the use of GBS for large-scale variant discovery and genotyping of a mapping population in sugarcane, providing several insights regarding the use of NGS data in a polyploid, non-model species. The use of GBS generated a large number of markers and still enabled ploidy and allelic dosage estimation. Moreover, we were able to identify seven QTLs, two of which had great potential for validation and future use for molecular breeding in sugarcane.


Assuntos
Mapeamento Cromossômico/métodos , Genes de Plantas/genética , Ligação Genética , Técnicas de Genotipagem , Locos de Características Quantitativas/genética , Saccharum/genética , Análise de Sequência de DNA , Alelos , Mineração de Dados , Dosagem de Genes , Marcadores Genéticos/genética , Anotação de Sequência Molecular , Polimorfismo Genético , Saccharum/crescimento & desenvolvimento
9.
World J Microbiol Biotechnol ; 33(7): 141, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28593475

RESUMO

Mangroves are located in coastal wetlands and are susceptible to the consequences of oil spills, what may threaten the diversity of microorganisms responsible for the nutrient cycling and the consequent ecosystem functioning. Previous reports show that high concentration of oil favors the incidence of epoxide hydrolases and haloalkane dehalogenases in mangroves. This finding has guided the goals of this study in an attempt to broaden the analysis to other hydrolases and thereby verify whether oil contamination interferes with the prevalence of particular hydrolases and their assigned microorganisms. For this, an in-depth survey of the taxonomic and functional microbial diversity recovered in a fosmid library (Library_Oil Mgv) constructed from oil-impacted Brazilian mangrove sediment was carried out. Fosmid DNA of the whole library was extracted and submitted to Illumina HiSeq sequencing. The resulting Library Oil_Mgv dataset was further compared with those obtained by direct sequencing of environmental DNA from Brazilian mangroves (from distinct regions and affected by distinct sources of contamination), focusing on hydrolases with potential use in biotechnological processes. The most abundant hydrolases found were proteases, esterases and amylases, with similar occurrence profile in all datasets. The main microbial groups harboring such hydrolase-encoding genes were distinct in each mangrove, and in the fosmid library these enzymes were mainly assigned to Chloroflexaceae (for amylases), Planctomycetaceae (for esterases) and Bradyrhizobiaceae (for proteases). Assembly and analysis of Library_Oil Mgv reads revealed three potentially novel enzymes, one epoxide hydrolase, one xylanase and one amylase, to be further investigated via heterologous expression assays.


Assuntos
Bactérias/classificação , Sedimentos Geológicos/microbiologia , Hidrolases/genética , Metagenômica/métodos , Bactérias/enzimologia , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Biodiversidade , Brasil , Biblioteca Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Poluição por Petróleo/efeitos adversos , Filogenia , Análise de Sequência de DNA , Microbiologia do Solo , Áreas Alagadas
10.
BMC Genomics ; 17(1): 910, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27835957

RESUMO

BACKGROUND: Urochloa humidicola (Koronivia grass) is a polyploid (6x to 9x) species that is used as forage in the tropics. Facultative apospory apomixis is present in most of the genotypes of this species, although one individual has been described as sexual. Molecular studies have been restricted to molecular marker approaches for genetic diversity estimations and linkage map construction. The objectives of the present study were to describe and compare the leaf transcriptome of two important genotypes that are highly divergent in terms of their phenotypes and reproduction modes: the sexual BH031 and the aposporous apomictic cultivar BRS Tupi. RESULTS: We sequenced the leaf transcriptome of Koronivia grass using an Illumina GAIIx system, which produced 13.09 Gb of data that consisted of 163,575,526 paired-end reads between the two libraries. We de novo-assembled 76,196 transcripts with an average length of 1,152 bp and filtered 35,093 non-redundant unigenes. A similarity search against the non-redundant National Center of Biotechnology Information (NCBI) protein database returned 65 % hits. We annotated 24,133 unigenes in the Phytozome database and 14,082 unigenes in the UniProtKB/Swiss-Prot database, assigned 108,334 gene ontology terms to 17,255 unigenes and identified 5,324 unigenes in 327 known metabolic pathways. Comparisons with other grasses via a reciprocal BLAST search revealed a larger number of orthologous genes for the Panicum species. The unigenes were involved in C4 photosynthesis, lignocellulose biosynthesis and flooding stress responses. A search for functional molecular markers revealed 4,489 microsatellites and 560,298 single nucleotide polymorphisms (SNPs). A quantitative real-time PCR analysis validated the RNA-seq expression analysis and allowed for the identification of transcriptomic differences between the two evaluated genotypes. Moreover, 192 unannotated sequences were classified as containing complete open reading frames, suggesting that the new, potentially exclusive genes should be further investigated. CONCLUSION: The present study represents the first whole-transcriptome sequencing of U. humidicola leaves, providing an important public information source of transcripts and functional molecular markers. The qPCR analysis indicated that the expression of certain transcripts confirmed the differential expression observed in silico, which demonstrated that RNA-seq is useful for identifying differentially expressed and unique genes. These results corroborate the findings from previous studies and suggest a hybrid origin for BH031.


Assuntos
Inundações , Poaceae/genética , Solo/química , Transcriptoma , Adaptação Fisiológica , Bases de Dados Genéticas , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Concentração de Íons de Hidrogênio , Repetições de Microssatélites/genética , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Polimorfismo de Nucleotídeo Único , Poliploidia , RNA de Plantas/química , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
11.
BMC Genomics ; 15: 540, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24984568

RESUMO

BACKGROUND: Sugarcane is the source of sugar in all tropical and subtropical countries and is becoming increasingly important for bio-based fuels. However, its large (10 Gb), polyploid, complex genome has hindered genome based breeding efforts. Here we release the largest and most diverse set of sugarcane genome sequences to date, as part of an on-going initiative to provide a sugarcane genomic information resource, with the ultimate goal of producing a gold standard genome. RESULTS: Three hundred and seventeen chiefly euchromatic BACs were sequenced. A reference set of one thousand four hundred manually-annotated protein-coding genes was generated. A small RNA collection and a RNA-seq library were used to explore expression patterns and the sRNA landscape. In the sucrose and starch metabolism pathway, 16 non-redundant enzyme-encoding genes were identified. One of the sucrose pathway genes, sucrose-6-phosphate phosphohydrolase, is duplicated in sugarcane and sorghum, but not in rice and maize. A diversity analysis of the s6pp duplication region revealed haplotype-structured sequence composition. Examination of hom(e)ologous loci indicate both sequence structural and sRNA landscape variation. A synteny analysis shows that the sugarcane genome has expanded relative to the sorghum genome, largely due to the presence of transposable elements and uncharacterized intergenic and intronic sequences. CONCLUSION: This release of sugarcane genomic sequences will advance our understanding of sugarcane genetics and contribute to the development of molecular tools for breeding purposes and gene discovery.


Assuntos
Genoma de Planta , Saccharum/genética , Sequência de Bases , Evolução Biológica , Biotecnologia , Cromossomos Artificiais Bacterianos , Duplicação Gênica , Biblioteca Gênica , Haplótipos , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/genética , Proteínas de Plantas/genética , Poliploidia , RNA/genética , RNA/metabolismo , Análise de Sequência de RNA , Sorghum/genética
12.
Sci Rep ; 14(1): 6600, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504117

RESUMO

Grape breeding programs are mostly focused on developing new varieties with high production volume, sugar contents, and phenolic compound diversity combined with resistance and tolerance to the main pathogens under culture and adverse environmental conditions. The 'Niagara' variety (Vitis labrusca × Vitis vinifera) is one of the most widely produced and commercialized table grapes in Brazil. In this work, we selected three Niagara somatic variants with contrasting berry phenotypes and performed morphological and transcriptomic analyses of their berries. Histological sections of the berries were also performed to understand anatomical and chemical composition differences of the berry skin between the genotypes. An RNA-Seq pipeline was implemented, followed by global coexpression network modeling. 'Niagara Steck', an intensified russet mutant with the most extreme phenotype, showed the largest difference in expression and showed selection of coexpressed network modules involved in the development of its russet-like characteristics. Enrichment analysis of differently expressed genes and hub network modules revealed differences in transcription regulation, auxin signaling and cell wall and plasmatic membrane biogenesis. Cutin- and suberin-related genes were also differently expressed, supporting the anatomical differences observed with microscopy.


Assuntos
Vitis , Vitis/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica , Frutas/metabolismo , Brasil
13.
Ecol Evol ; 14(7): e11704, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39005883

RESUMO

The mountains in the Atlantic Forest domain are environments that harbor a high biodiversity, including species adapted to colder climates that were probably influenced by the climatic variations of the Pleistocene. To understand the phylogeographic pattern and assess the taxonomic boundaries between two sister montane species, a genomic study of the butterflies Actinote mantiqueira and A. alalia (Nymphalidae: Acraeini) was conducted. Analyses based on partial sequences of the mitochondrial gene COI (barcode region) failed to recover any phylogenetic or genetic structure discriminating the two species or sampling localities. However, single nucleotide polymorphisms gathered using Genotyping-by-Sequencing provided a strong isolation pattern in all analyses (genetic distance, phylogenetic hypothesis, clustering analyses, and F ST statistics) which is consistent with morphology, separating all individuals of A. alalia from all populations of A. mantiqueira. The three sampled mountain ranges where A. mantiqueira populations occur-Serra do Mar, Serra da Mantiqueira, and Poços de Caldas Plateau-were identified as three isolated clusters. Paleoclimate simulations indicate that both species' distributions changed according to climatic oscillations in the Pleistocene period, with the two species potentially occurring in areas of lower altitude during glacial periods when compared to the interglacial periods (as the present). Besides, a potential path between their distribution through the Serra do Mar Mountain range was inferred. Therefore, the Pleistocene climatic fluctuation had a significant impact on the speciation process between A. alalia and A. mantiqueira, which was brought on by isolation at different mountain summits during interglacial periods, as shown by the modeled historical distribution and the observed genetic structure.

14.
Front Plant Sci ; 14: 1068202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824205

RESUMO

The protein kinase (PK) superfamily constitutes one of the largest and most conserved protein families in eukaryotic genomes, comprising core components of signaling pathways in cell regulation. Despite its remarkable relevance, only a few kinase families have been studied in Hevea brasiliensis. A comprehensive characterization and global expression analysis of the PK superfamily, however, is currently lacking. In this study, with the aim of providing novel inferences about the mechanisms associated with the stress response developed by PKs and retained throughout evolution, we identified and characterized the entire set of PKs, also known as the kinome, present in the Hevea genome. Different RNA-sequencing datasets were employed to identify tissue-specific expression patterns and potential correspondences between different rubber tree genotypes. In addition, coexpression networks under several abiotic stress conditions, such as cold, drought and latex overexploitation, were employed to elucidate associations between families and tissues/stresses. A total of 1,809 PK genes were identified using the current reference genome assembly at the scaffold level, and 1,379 PK genes were identified using the latest chromosome-level assembly and combined into a single set of 2,842 PKs. These proteins were further classified into 20 different groups and 122 families, exhibiting high compositional similarities among family members and with two phylogenetically close species Manihot esculenta and Ricinus communis. Through the joint investigation of tandemly duplicated kinases, transposable elements, gene expression patterns, and coexpression events, we provided insights into the understanding of the cell regulation mechanisms in response to several conditions, which can often lead to a significant reduction in rubber yield.

15.
Methods Mol Biol ; 2638: 93-113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781637

RESUMO

Molecular marker discovery and genotyping are major challenges in polyploid breeding programs incorporating molecular biology tools. In this context, this work describes a method for single nucleotide polymorphism (SNP) genotyping in polyploid crops using matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry, the MassARRAY System.


Assuntos
Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Genótipo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
16.
Gene ; 855: 147127, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563714

RESUMO

The protein kinase (PK) superfamily is one of the largest superfamilies in plants and is the core regulator of cellular signaling. Even considering this substantial importance, the kinome of common bean (Phaseolus vulgaris) has not been profiled yet. Here, we identified and characterised the complete set of kinases of common bean, performing an in-depth investigation with phylogenetic analyses and measurements of gene distribution, structural organization, protein properties, and expression patterns over a large set of RNA-Sequencing data. Being composed of 1,203 PKs distributed across all P. vulgaris chromosomes, this set represents 3.25% of all predicted proteins for the species. These PKs could be classified into 20 groups and 119 subfamilies, with a more pronounced abundance of subfamilies belonging to the receptor-like kinase (RLK)-Pelle group. In addition to provide a vast and rich reservoir of data, our study supplied insights into the compositional similarities between PK subfamilies, their evolutionary divergences, highly variable functional profile, structural diversity, and expression patterns, modeled with coexpression networks for investigating putative interactions associated with stress response.


Assuntos
Phaseolus , Phaseolus/genética , Phaseolus/metabolismo , Filogenia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Família Multigênica , Plantas/genética , Proteínas de Plantas/metabolismo
17.
Front Plant Sci ; 14: 1303417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148869

RESUMO

Tropical forage grasses, particularly those belonging to the Urochloa genus, play a crucial role in cattle production and serve as the main food source for animals in tropical and subtropical regions. The majority of these species are apomictic and tetraploid, highlighting the significance of U. ruziziensis, a sexual diploid species that can be tetraploidized for use in interspecific crosses with apomictic species. As a means to support breeding programs, our study investigates the feasibility of genome-wide family prediction in U. ruziziensis families to predict agronomic traits. Fifty half-sibling families were assessed for green matter yield, dry matter yield, regrowth capacity, leaf dry matter, and stem dry matter across different clippings established in contrasting seasons with varying available water capacity. Genotyping was performed using a genotyping-by-sequencing approach based on DNA samples from family pools. In addition to conventional genomic prediction methods, machine learning and feature selection algorithms were employed to reduce the necessary number of markers for prediction and enhance predictive accuracy across phenotypes. To explore the regulation of agronomic traits, our study evaluated the significance of selected markers for prediction using a tree-based approach, potentially linking these regions to quantitative trait loci (QTLs). In a multiomic approach, genes from the species transcriptome were mapped and correlated to those markers. A gene coexpression network was modeled with gene expression estimates from a diverse set of U. ruziziensis genotypes, enabling a comprehensive investigation of molecular mechanisms associated with these regions. The heritabilities of the evaluated traits ranged from 0.44 to 0.92. A total of 28,106 filtered SNPs were used to predict phenotypic measurements, achieving a mean predictive ability of 0.762. By employing feature selection techniques, we could reduce the dimensionality of SNP datasets, revealing potential genotype-phenotype associations. The functional annotation of genes near these markers revealed associations with auxin transport and biosynthesis of lignin, flavonol, and folic acid. Further exploration with the gene coexpression network uncovered associations with DNA metabolism, stress response, and circadian rhythm. These genes and regions represent important targets for expanding our understanding of the metabolic regulation of agronomic traits and offer valuable insights applicable to species breeding. Our work represents an innovative contribution to molecular breeding techniques for tropical forages, presenting a viable marker-assisted breeding approach and identifying target regions for future molecular studies on these agronomic traits.

18.
Artigo em Inglês | MEDLINE | ID: mdl-22505421

RESUMO

The bacterium Xylella fastidiosa is a phytopathogenic organism that causes citrus variegated chlorosis, a disease which attacks economically important crops, mainly oranges. In this communication, the crystallization and preliminary X-ray crystallographic analysis of XfSurE, a survival protein E from X. fastidiosa, are reported. Data were collected for two crystal forms, I and II, to 1.93 and 2.9 Å resolution, respectively. Crystal form I belonged to space group C2, with unit-cell parameters a = 172.36, b = 84.18, c = 87.24 Å, α = γ = 90, ß = 96.59°, whereas crystal form II belonged to space group C2, with unit-cell parameters a = 88.05, b = 81.26, c = 72.84 Å, α = γ = 90, ß = 94.76°.


Assuntos
Proteínas de Bactérias/química , Xylella/química , Cristalização , Cristalografia por Raios X
19.
Artigo em Inglês | MEDLINE | ID: mdl-22691782

RESUMO

The ORF XF2234 in the Xylella fastidiosa genome was identified as encoding a small heat-shock protein of 17.9 kDa (HSP17.9). HSP17.9 was found as one of the proteins that are induced during X. fastidiosa proliferation and infection in citrus culture. Recombinant HSP17.9 was crystallized and surface atomic force microscopy experiments were conducted with the aim of better characterizing the HSP17.9 crystals. X-ray diffraction data were collected at 2.7 Šresolution. The crystal belonged to space group P4(3)22, with unit-cell parameters a = 68.90, b = 68.90, c = 72.51 Å, and is the first small heat-shock protein to crystallize in this space group.


Assuntos
Proteínas de Choque Térmico Pequenas/química , Xylella/química , Cristalografia por Raios X , Proteínas de Choque Térmico Pequenas/ultraestrutura , Microscopia de Força Atômica
20.
Genet Mol Biol ; 35(4): 847-61, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23271947

RESUMO

Stylosanthes species are important forage legumes in tropical and subtropical areas. S. macrocephala and S. capitata germplasm collections that consist of 134 and 192 accessions, respectively, are maintained at the Brazilian Agricultural Research Corporation Cerrados (Embrapa-Cerrados). Polymorphic microsatellite markers were used to assess genetic diversity and population structure with the aim to assemble a core collection. The mean values of H(O) and H(E) for S. macrocephala were 0.08 and 0.36, respectively, whereas the means for S. capitata were 0.48 and 0.50, respectively. Roger's genetic distance varied from 0 to 0.83 for S. macrocephala and from 0 to 0.85 for S. capitata. Analysis with STRUCTURE software distinguished five groups among the S. macrocephala accessions and four groups among those of S. capitata. Nei's genetic diversity was 27% in S. macrocephala and 11% in S. capitata. Core collections were assembled for both species. For S. macrocephala, all of the allelic diversity was represented by 23 accessions, whereas only 13 accessions were necessary to represent all allelic diversity for S. capitata. The data presented herein evidence the population structure present in the Embrapa-Cerrados germplasm collections of S. macrocephala and S. capitata, which may be useful for breeding programs and germplasm conservation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA