Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Comput Chem ; 36(27): 2027-36, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26171999

RESUMO

MR-CISD, MR-CISD+Q, and MR-AQCC calculations have been performed on the minima and transition states (corresponding to intramolecular proton transfer between the protonation sites) of the ground state of protonated nitrosamine and N,N-dimethylnitrosamine. Our highest level results (MR-AQCC/cc-pVTZ) for the smaller system indicate that protonation on the N amino (2a) is practically as favorable as the most favorable protonation on the O atom (1a). They also suggest that protonation on the nitroso N atom (2c) is ∼14.5 kcal/mol less favorable than 1a. Results obtained at the MR-CISD+Q/cc-pVTZ level indicate that the effect of methylation on the relative energies of the tautomers is, in order of importance, 2a > 2c and increases their energies by ∼17.5 and 4.8 kcal/mol, respectively. They also indicate that methylation alters significantly the intramolecular proton transfer barriers. The largest differences between the common geometric parameters of both systems have been found for 2a.


Assuntos
Modelos Químicos , Nitrosaminas/química , Prótons , Metilação , Teoria Quântica , Estereoisomerismo , Termodinâmica
2.
Front Mol Biosci ; 8: 785316, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111812

RESUMO

Anionic peptides of scorpions are molecules rich in aspartic and/or glutamic acid residues and correspond to a class of peptides without disulfide bonds that are still little explored. TanP is a linear anionic peptide (50 amino acid residues and net charge -20) present in the venom gland of the scorpion, Tityus stigmurus, with chelating properties for Cu2+ ion and immunomodulatory properties. The therapeutic application of chelating molecules is related to cases of acute or chronic intoxication by metals, neurodegenerative diseases, hematological diseases, healing of skin wounds, cardiovascular diseases, and cancer. In this approach, the chelating activity of TanP was evaluated in relation to new metal ions (Fe2+ and Zn2+) of biological importance, as well as its antioxidant, hemostatic, immunomodulatory, and healing potential, aiming to expand the biological and biotechnological potential of this peptide. TanP (25 µM) was able to form stable complexes with Fe2+ in a ratio of 1:5 (TanP: Fe2+). Theoretical results suggest that TanP can work as a sensor to identify and quantify Fe2+ ions. The fluorescence intensity of TanP (1.12 µM) decreased significantly after the addition of Fe2+, obtaining the highest ratio 1: 7.4 (TanP: Fe2+) that led to the lowest fluorescence intensity. For Zn2+, no relevant spectral change was noted. TanP (50 µM) showed a maximum of 3% of hemolytic activity, demonstrating biocompatibility, as well as exhibiting a 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity of above 70% at all the concentrations tested (1-25 µM), and 89.7% iron-chelating activity at 25 µM and 96% hydroxyl radical-scavenging activity at 73.6 µM. In addition, TanP (12.5 and 25 µM) revealed an anticoagulant effect, prolonging the clotting time in prothrombin time and activated partial thromboplastin time assays, with no fibrinogenolytic activity. TanP (12.5 and 25 µM) induced the release of TNF-α by murine macrophages, in the absence of lipopolysaccharides, with a concentration-dependent increase and also stimulated the migration of 3T3 cells in the in vitro healing assay. Thus, TanP revealed a multifunctional potential, being useful as a prototype for the development of new therapeutic and biotechnological agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA