Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
2.
Virol J ; 15(1): 23, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370812

RESUMO

BACKGROUND: Zika virus is an emerging arbovirus of the family Flaviviridae and genus Flavivirus that until 2007 was restricted to a few cases of mild illness in Africa and Asia. CASE PRESENTATION: We report a case of atrial fibrillation disclosed during an acute Zika virus infection in a 49-year-old man. Different biological samples were analyzed for the molecular diagnosis of Zika by real-time PCR, however only the saliva specimen was positive. The patient's wife tested positive in the serum sample, although she was an asymptomatic carrier. Moreover, a complete overview of patient's biomarkers, including cytokines, chemokines, and growth-factors levels, was analyzed and compared to gender and age matching non-infected controls, as well as other Zika infected patients, considering the 95%CI of the mean values. Elevated levels of CXCL8, CCL11, CCL2, CXCL10, IL-1ß, IL-6, TNF-α, IFN-γ, IL-17, IL-1Ra, IL-4, IL-9, FGF-basic, PDGF, G-CSF, and GM-CSF were observed in the Atrial fibrillation patient, in contrast to uninfected controls. Furthermore, increased levels of CCL5, IL-1ß, TNF-α, IFN-γ, IL-9, G-CSF, and GM-CSF were observed only in the atrial fibrillation patient, when compared to other Zika patients. CONCLUSIONS: To our knowledge, this is the first description of this type of cardiac disorder in Zika patients which may be considered another atypical manifestation during Zika virus infection.


Assuntos
Fibrilação Atrial/diagnóstico , Fibrilação Atrial/etiologia , Infecção por Zika virus/complicações , Infecção por Zika virus/virologia , Zika virus , Fibrilação Atrial/metabolismo , Biomarcadores , Citocinas/metabolismo , Eletrocardiografia , Testes de Função Cardíaca , Humanos , Mediadores da Inflamação , Masculino , Pessoa de Meia-Idade , Radiografia Torácica , Zika virus/classificação , Zika virus/genética
3.
Genes (Basel) ; 15(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38927749

RESUMO

BACKGROUND: Currently, the Enterobacteriaceae species are responsible for a variety of serious infections and are already considered a global public health problem, especially in underdeveloped countries, where surveillance and monitoring programs are still scarce and limited. Analyses were performed on the complete genome of an extensively antibiotic-resistant strain of Enterobater hormaechei, which was isolated from a patient with non-Hodgkin's lymphoma, who had been admitted to a hospital in the city of Manaus, Brazil. METHODS: Phenotypical identification and susceptibility tests were performed in automated equipment. Total DNA extraction was performed using the PureLink genomic DNA mini-Kit. The genomic DNA library was prepared with Illumina Microbial Amplicon Prep and sequenced in the MiSeq Illumina Platform. The assembly of the whole-genome and individual analyses of specific resistance genes extracted were carried out using online tools and the Geneious Prime software. RESULTS: The analyses identified an extensively resistant ST90 clone of E. hormaechei carrying different genes, including blaCTX-M-15, blaGES-2, blaTEM-1A, blaACT-15, blaOXA-1 and blaNDM-1, [aac(3)-IIa, aac(6')-Ian, ant(2″)-Ia], [aac(6')-Ib-cr, (qnrB1)], dfrA25, sul1 and sul2, catB3, fosA, and qnrB, in addition to resistance to chlorhexidine, which is widely used in patient antisepsis. CONCLUSIONS: These findings highlight the need for actions to control and monitor these pathogens in the hospital environment.


Assuntos
Farmacorresistência Bacteriana Múltipla , Enterobacter , Genoma Bacteriano , Linfoma não Hodgkin , Sequenciamento Completo do Genoma , Humanos , Enterobacter/genética , Enterobacter/efeitos dos fármacos , Enterobacter/isolamento & purificação , Linfoma não Hodgkin/genética , Linfoma não Hodgkin/microbiologia , Linfoma não Hodgkin/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/genética , Sequenciamento Completo do Genoma/métodos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/genética , Testes de Sensibilidade Microbiana , Brasil
5.
Bioinform Biol Insights ; 18: 11779322241251581, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737722

RESUMO

Background: Dengue virus (DENV) causes an important disease and directly affects public health, being the arbovirus that presents the highest number of infections and deaths in the Western Brazilian Amazon. This virus is divided into 4 serotypes that have already circulated in the region. Methodology: Molecular characterization of a cohort containing 841 samples collected from febrile patients between 2021 and 2023 was analyzed using a commercial kit to detect the main arboviruses circulating in Brazil: Zika, DENV-1, DENV-2, DENV-3, DENV-4 and, Chikungunya. Subsequently, Sanger sequencing was performed for positive samples. Results: The cohort detected 162 positive samples, 12 for DENV-1 and 150 identified as DENV-2, indicating co-circulation of serotypes. The samples were subjected to sequencing and the analysis of the sequences that obtained good quality revealed that 5 samples belonged to the V genotype of DENV-1 and 46 were characterized as DENV-2 Cosmopolitan genotype-lineage 5. Conclusion: The results allowed us to identify for the first time the Cosmopolitan genotype in Rondônia, Brazilian Western Amazon, and its fast spread dispersion.

6.
Microb Genom ; 8(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35297757

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has infected almost 200 million people worldwide by July 2021 and the pandemic has been characterized by infection waves of viral lineages showing distinct fitness profiles. The simultaneous infection of a single individual by two distinct SARS-CoV-2 lineages may impact COVID-19 disease progression and provides a window of opportunity for viral recombination and the emergence of new lineages with differential phenotype. Several hundred SARS-CoV-2 lineages are currently well phylogenetically defined, but two main factors have precluded major coinfection/codetection and recombination analysis thus far: (i) the low diversity of SARS-CoV-2 lineages during the first year of the pandemic, which limited the identification of lineage defining mutations necessary to distinguish coinfecting/recombining viral lineages; and the (ii) limited availability of raw sequencing data where abundance and distribution of intrasample/intrahost variability can be accessed. Here, we assembled a large sequencing dataset from Brazilian samples covering a period of 18 May 2020 to 30 April 2021 and probed it for unexpected patterns of high intrasample/intrahost variability. This approach enabled us to detect nine cases of SARS-CoV-2 coinfection with well characterized lineage-defining mutations, representing 0.61 % of all samples investigated. In addition, we matched these SARS-CoV-2 coinfections with spatio-temporal epidemiological data confirming its plausibility with the cocirculating lineages at the timeframe investigated. Our data suggests that coinfection with distinct SARS-CoV-2 lineages is a rare phenomenon, although it is certainly a lower bound estimate considering the difficulty to detect coinfections with very similar SARS-CoV-2 lineages and the low number of samples sequenced from the total number of infections.


Assuntos
COVID-19/virologia , Coinfecção/virologia , SARS-CoV-2/genética , Superinfecção/virologia , Brasil , Genoma Viral , Humanos , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único
7.
Nat Med ; 27(7): 1230-1238, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34035535

RESUMO

The northern state of Amazonas is among the regions in Brazil most heavily affected by the COVID-19 epidemic and has experienced two exponentially growing waves, in early and late 2020. Through a genomic epidemiology study based on 250 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from different Amazonas municipalities sampled between March 2020 and January 2021, we reveal that the first exponential growth phase was driven mostly by the dissemination of lineage B.1.195, which was gradually replaced by lineage B.1.1.28 between May and June 2020. The second wave coincides with the emergence of the variant of concern (VOC) P.1, which evolved from a local B.1.1.28 clade in late November 2020 and replaced the parental lineage in <2 months. Our findings support the conclusion that successive lineage replacements in Amazonas were driven by a complex combination of variable levels of social distancing measures and the emergence of a more transmissible VOC P.1 virus. These data provide insights to understanding the mechanisms underlying the COVID-19 epidemic waves and the risk of dissemination of SARS-CoV-2 VOC P.1 in Brazil and, potentially, worldwide.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Genoma Viral/genética , SARS-CoV-2/genética , Adulto , Brasil/epidemiologia , Teste de Ácido Nucleico para COVID-19 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Filogenia , Filogeografia , Análise Espaço-Temporal
8.
Virus Evol ; 7(2): veab091, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35039782

RESUMO

One of the most remarkable severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) features is the significant number of mutations they acquired. However, the specific factors that drove the emergence of such variants since the second half of 2020 are not fully resolved. In this study, we describe a new SARS-CoV-2 P.1 sub-lineage circulating in Brazil, denoted here as Gamma-like-II, that as well as the previously described lineage Gamma-like-I shares several lineage-defining mutations with the VOC Gamma. Reconstructions of ancestor sequences support that most lineage-defining mutations of the Spike (S) protein, including those at the receptor-binding domain (RBD), accumulated at the first P.1 ancestor. In contrast, mutations outside the S protein were mostly fixed at subsequent steps. Our evolutionary analyses estimate that P.1-ancestral strains carrying RBD mutations of concern probably circulated cryptically in the Amazonas for several months before the emergence of the VOC Gamma. Unlike the VOC Gamma, the other P.1 sub-lineages displayed a much more restricted dissemination and accounted for a low fraction (<2 per cent) of SARS-CoV-2 infections in Brazil in 2021. The stepwise diversification of lineage P.1 through multiple inter-host transmissions is consistent with the hypothesis that partial immunity acquired from natural SARS-CoV-2 infections in heavily affected regions might have been a major driving force behind the natural selection of some VOCs. The lag time between the emergence of the P.1 ancestor and the expansion of the VOC Gamma and the divergent epidemic trajectories of P.1 sub-lineages support a complex interplay between the emergence of mutations of concern and viral spread in Brazil.

9.
Infect Genet Evol ; 85: 104561, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32961364

RESUMO

Viruses were identified from male anthropophilic mosquitoes from Mato Grosso (MT) State, Midwest Brazil from February 2017 to January 2018. Mosquitoes tested included Aedes (Stegomyia) aegypti (1139 males; 84 pools), Culex quinquefasciatus (9426 males; 179 pools), Culex sp. (3 males; 3 pools) and Psorophora albigenu (1 male; 1 pool) collected from four cities of MT. Pools were subjected to viral RNA extraction followed by RT-PCRs specific for ten flaviviruses, five alphaviruses and Simbu serogroup of orthobunyaviruses. Positive pools were passaged three times in VERO cells (alphavirus and orthobunyavirus) or C6/36 cells (flavivirus), with isolates confirmed through RT-PCR and nucleotide sequencing. We detected pools positive for Ilhéus (1 pool), dengue serotype 4 (1), Mayaro (12), equine encephalitis virus (1) yellow fever (1), Oropouche (2), Zika (4) and chikungunya (12) viruses. High throughput sequencing of arbovirus positive pools identified 35 insect-specific viruses (ISVs) from the families Circoviridae (2), Parvoviridae (2), Totiviridae (1), Flaviviridae (1), Iflaviridae (2), Mesoniviridae (4), Nodaviridae (2), Luteoviridae (1), Phasmaviridae (1) Phenuiviridae (2), Rhabdoviridae (2), Orthomyxoviridae (1), Xinmoviridae (1), and unclassified Bunyavirales (1), unclassified Picornavirales (3), unclassified Riboviria (4) and taxon Negevirus (5). From these, five novel viruses were tentatively named Mojica circovirus, Kuia iflavirus, Muxirum negevirus, Lambada picorna-like virus and Tacuru picorna-like virus. Our findings underscore the diversity and wide geographical distribution of ISVs and arboviruses infecting male culicids.


Assuntos
Arbovírus/fisiologia , Culicidae/virologia , Vírus de Insetos/fisiologia , Animais , Brasil , Linhagem Celular , Chlorocebus aethiops , Sequenciamento de Nucleotídeos em Larga Escala , Vírus de Insetos/classificação , Masculino , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Vero , Tropismo Viral
10.
PLoS Negl Trop Dis ; 13(3): e0007065, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30845267

RESUMO

BACKGROUND: Since its first detection in the Caribbean in late 2013, chikungunya virus (CHIKV) has affected 51 countries in the Americas. The CHIKV epidemic in the Americas was caused by the CHIKV-Asian genotype. In August 2014, local transmission of the CHIKV-Asian genotype was detected in the Brazilian Amazon region. However, a distinct lineage, the CHIKV-East-Central-South-America (ECSA)-genotype, was detected nearly simultaneously in Feira de Santana, Bahia state, northeast Brazil. The genomic diversity and the dynamics of CHIKV in the Brazilian Amazon region remains poorly understood despite its importance to better understand the epidemiological spread and public health impact of CHIKV in the country. METHODOLOGY/PRINCIPAL FINDINGS: We report a large CHIKV outbreak (5,928 notified cases between August 2014 and August 2018) in Boa vista municipality, capital city of Roraima's state, located in the Brazilian Amazon region. We generated 20 novel CHIKV-ECSA genomes from the Brazilian Amazon region using MinION portable genome sequencing. Phylogenetic analyses revealed that despite an early introduction of the Asian genotype in 2015 in Roraima, the large CHIKV outbreak in 2017 in Boa Vista was caused by an ECSA-lineage most likely introduced from northeastern Brazil. Epidemiological analyses suggest a basic reproductive number of R0 of 1.66, which translates in an estimated 39 (95% CI: 36 to 45) % of Roraima's population infected with CHIKV-ECSA. Finally, we find a strong association between Google search activity and the local laboratory-confirmed CHIKV cases in Roraima. CONCLUSIONS/SIGNIFICANCE: This study highlights the potential of combining traditional surveillance with portable genome sequencing technologies and digital epidemiology to inform public health surveillance in the Amazon region. Our data reveal a large CHIKV-ECSA outbreak in Boa Vista, limited potential for future CHIKV outbreaks, and indicate a replacement of the Asian genotype by the ECSA genotype in the Amazon region.


Assuntos
Febre de Chikungunya/epidemiologia , Vírus Chikungunya/genética , Surtos de Doenças/prevenção & controle , Genoma Viral/genética , Zoonoses/epidemiologia , Animais , Brasil/epidemiologia , Febre de Chikungunya/transmissão , Febre de Chikungunya/virologia , Vírus Chikungunya/isolamento & purificação , Monitoramento Epidemiológico , Humanos , Filogenia , Sequenciamento Completo do Genoma , Zoonoses/transmissão , Zoonoses/virologia
11.
PLoS Negl Trop Dis ; 12(7): e0006594, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30011278

RESUMO

BACKGROUND: Arboviruses are viruses transmitted to humans and other animals by the bite of hematophagous arthropods. Infections caused by chikungunya virus (CHIKV), dengue virus (DENV), Zika virus (ZIKV), and the deadlier yellow fever virus (YFV) are current public health problems in several countries, mainly those located in tropical and subtropical regions. One of the main prevention strategies continues to be vector control, with the elimination of breeding sites and surveillance of infested areas. The use of ovitraps for Aedes mosquitos monitoring has already demonstrated promising results, and maybe be also useful for arboviral surveillance. METHODS: This work aimed to detect natural vertical transmission of arboviruses in Aedes aegypti and Aedes albopictus. Mosquito egg collection was carried out using ovitraps in Itacoatiara, a mid-size city in Amazonas state, Brazil. Collected eggs were allowed to hatch and larvae were tested for CHIKV, DENV, and ZIKV RNA by RT-qPCR. RESULTS: A total of 2,057 specimens (1,793 Ae. aegypti and 264 Ae. albopictus), in 154 larvae pools were processed. Results showed one positive pool for CHIKV and one positive pool for ZIKV. The active ZIKV infection was further confirmed by the detection of the negative-strand viral RNA and nucleotide sequencing which confirmed the Asian genotype. The Infection Rate per 1,000 mosquitoes tested was assessed by Maximum Likelihood Estimation (MLE) with 0.45 and 0.44 for CHIKV and ZIKV, respectively, and by Minimum Infection Rate (MIR) with 0.45 for both viruses. CONCLUSION: To our knowledge, this is the first detection of ZIKV in natural vertical transmission in the Ae. aegypti, a fact that may contribute to ZIKV maintenance in nature during epidemics periods. Furthermore, our results highlight that the use of ovitraps and the molecular detection of arbovirus may contribute to health surveillance, directing the efforts to more efficient transmission blockade.


Assuntos
Aedes/virologia , Mosquitos Vetores/virologia , Óvulo/virologia , Infecção por Zika virus/transmissão , Zika virus/isolamento & purificação , Aedes/fisiologia , Animais , Arbovírus/genética , Arbovírus/isolamento & purificação , Arbovírus/fisiologia , Brasil , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Larva/virologia , Masculino , Mosquitos Vetores/crescimento & desenvolvimento , Mosquitos Vetores/fisiologia , Óvulo/crescimento & desenvolvimento , Zika virus/genética , Zika virus/fisiologia , Infecção por Zika virus/virologia
12.
PLoS One ; 10(3): e0121284, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25803794

RESUMO

Several differences concerning bacterial species, opportunistic pathogens, elements of the resistome as well as variations concerning the CFU/mL counts were identified in some of the five most marketed bottled mineral water from Araraquara city, São Paulo, Brazil. Two out of five brands tested were confirmed as potential source of opportunistic pathogens, including Mycobacterium gordonae, Ralstonia picketti and Burkholderia cepacia complex (Bcc). A total of one hundred and six isolates were recovered from four of these bottled mineral water brands. Betaproteobacteria was predominant followed by Alphaproteobacteria, Gammaproteobacteria and Firmicutes. Ninety percent of the bacteria isolated demonstrated resistance to seventeen of the nineteen antimicrobials tested. These antimicrobials included eight different classes, including 3rd and 4th generation cephalosporins, carbapenems and fluoroquinolones. Multidrug resistant bacteria were detected for fifty-nine percent of isolates in three water brands at counts up to 103 CFU/ml. Of major concern, the two bottled mineral water harboring opportunistic pathogens were also source of elements of the resistome that could be directly transferred to humans. All these differences found among brands highlight the need for continuous bacteriological surveillance of bottled mineral water.


Assuntos
Água Potável/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Firmicutes/isolamento & purificação , Proteobactérias/isolamento & purificação , Análise de Variância , Brasil , Firmicutes/genética , Proteobactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA