Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 195(5): 1012-21, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23264578

RESUMO

DivIVA proteins are curvature-sensitive membrane binding proteins that recruit other proteins to the poles and the division septum. They consist of a conserved N-terminal lipid binding domain fused to a less conserved C-terminal domain. DivIVA homologues interact with different proteins involved in cell division, chromosome segregation, genetic competence, or cell wall synthesis. It is unknown how DivIVA interacts with these proteins, and we used the interaction of Bacillus subtilis DivIVA with MinJ and RacA to investigate this. MinJ is a transmembrane protein controlling division site selection, and the DNA-binding protein RacA is crucial for chromosome segregation during sporulation. Initial bacterial two-hybrid experiments revealed that the C terminus of DivIVA appears to be important for recruiting both proteins. However, the interpretation of these results is limited since it appeared that C-terminal truncations also interfere with DivIVA oligomerization. Therefore, a chimera approach was followed, making use of the fact that Listeria monocytogenes DivIVA shows normal polar localization but is not biologically active when expressed in B. subtilis. Complementation experiments with different chimeras of B. subtilis and L. monocytogenes DivIVA suggest that MinJ and RacA bind to separate DivIVA domains. Fluorescence microscopy of green fluorescent protein-tagged RacA and MinJ corroborated this conclusion and suggests that MinJ recruitment operates via the N-terminal lipid binding domain, whereas RacA interacts with the C-terminal domain. We speculate that this difference is related to the cellular compartments in which MinJ and RacA are active: the cell membrane and the cytoplasm, respectively.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Divisão Celular , Parede Celular/metabolismo , Segregação de Cromossomos , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Fluorescência Verde/genética , Listeria monocytogenes/química , Listeria monocytogenes/genética , Proteínas de Membrana/genética , Proteínas Recombinantes de Fusão/química , Alinhamento de Sequência
2.
Mol Microbiol ; 79(5): 1294-304, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21205012

RESUMO

Dynamins are a family of large GTPases that are involved in key cellular processes, where they mediate events of membrane fission and fusion. The dynamin superfamily is not restricted to eukaryotes but might have a bacterial origin, with many species containing an operon of two genes related to mitofusins. However, it is not clear whether bacterial dynamins promote membrane fission or fusion. The dynamin-like protein DynA of Bacillus subtilis is remarkable in that it arose from a gene fusion of two dynamins and contains two separate dynamin-like subunits and GTPase domains. We found that DynA exhibits strictly auto-regulated GTP hydrolysis, and that progress through the GTPase cycle is concerted within DynA oligomers. Furthermore, we show that DynA can tether membranes and mediates nucleotide-independent membrane fusion in vitro. This process merely requires magnesium as a cofactor. Our results provide a set of minimal requirements for membrane fusion by dynamin-like proteins and have mechanistic implications in particular for the fusion of mitochondria.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Dinaminas/metabolismo , Fusão de Membrana , Nucleotídeos/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dinaminas/química , Dinaminas/genética , Guanosina Trifosfato/metabolismo , Mitocôndrias/química , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estrutura Terciária de Proteína
3.
Genes (Basel) ; 12(2)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530637

RESUMO

Precise spatiotemporal expression of the Nodal-Lefty-Pitx2 cascade in the lateral plate mesoderm establishes the left-right axis, which provides vital cues for correct organ formation and function. Mutations of one cascade constituent PITX2 and, separately, the Forkhead transcription factor FOXC1 independently cause a multi-system disorder known as Axenfeld-Rieger syndrome (ARS). Since cardiac involvement is an established ARS phenotype and because disrupted left-right patterning can cause congenital heart defects, we investigated in zebrafish whether foxc1 contributes to organ laterality or situs. We demonstrate that CRISPR/Cas9-generated foxc1a and foxc1b mutants exhibit abnormal cardiac looping and that the prevalence of cardiac situs defects is increased in foxc1a-/-; foxc1b-/- homozygotes. Similarly, double homozygotes exhibit isomerism of the liver and pancreas, which are key features of abnormal gut situs. Placement of the asymmetric visceral organs relative to the midline was also perturbed by mRNA overexpression of foxc1a and foxc1b. In addition, an analysis of the left-right patterning components, identified in the lateral plate mesoderm of foxc1 mutants, reduced or abolished the expression of the NODAL antagonist lefty2. Together, these data reveal a novel contribution from foxc1 to left-right patterning, demonstrating that this role is sensitive to foxc1 gene dosage, and provide a plausible mechanism for the incidence of congenital heart defects in Axenfeld-Rieger syndrome patients.


Assuntos
Segmento Anterior do Olho/anormalidades , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/etiologia , Oftalmopatias Hereditárias/diagnóstico , Oftalmopatias Hereditárias/etiologia , Fatores de Transcrição Forkhead/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Fenótipo , Alelos , Animais , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Estudos de Associação Genética/métodos , Genótipo , Humanos , Mesoderma/embriologia , Mesoderma/metabolismo , Mutação , Peixe-Zebra
4.
PLoS One ; 5(3): e9850, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20352045

RESUMO

BACKGROUND: Cell division in Bacillus subtilis takes place precisely at midcell, through the action of Noc, which prevents division from occurring over the nucleoids, and the Min system, which prevents cell division from taking place at the poles. Originally it was thought that the Min system acts directly on FtsZ, preventing the formation of a Z-ring and, therefore, the formation of a complete cytokinetic ring at the poles. Recently, a new component of the B. subtilis Min system was identified, MinJ, which acts as a bridge between DivIVA and MinCD. METHODOLOGY/PRINCIPAL FINDINGS: We used fluorescence microscopy and molecular genetics to examine the molecular role of MinJ. We found that in the absence of a functional Min system, FtsA, FtsL and PBP-2B remain associated with completed division sites. Evidence is provided that MinCDJ are responsible for the failure of these proteins to localize properly, indicating that MinCDJ can act on membrane integral components of the divisome. CONCLUSIONS/SIGNIFICANCE: Taken together, we postulate that the main function of the Min system is to prevent minicell formation adjacent to recently completed division sites by promoting the disassembly of the cytokinetic ring, thereby ensuring that cell division occurs only once per cell cycle. Thus, the role of the Min system in rod-shaped bacteria seems not to be restricted to an inhibitory function on FtsZ polymerization, but can act on different levels of the divisome.


Assuntos
Adenosina Trifosfatases/genética , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Genes Bacterianos , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/química , Imageamento Tridimensional , Microscopia de Fluorescência/métodos , Estrutura Terciária de Proteína , Fatores de Tempo
5.
Curr Opin Microbiol ; 12(6): 683-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19884039

RESUMO

Rod-shaped bacteria often divide with high precision at midcell to produce two equally sized daughter cells. The positioning of the division machinery in Escherichia coli and Bacillus subtilis is spatially regulated by two inhibitory systems, the nucleoid occlusion and the Min system. The current models suggest that the target of the inhibitory mechanism is the cytoskeletal element FtsZ and that the concerted action of nucleoid occlusion and Min are necessary for correct placement of the division machinery. However, recent advances show that at least the Min system also ensures that division occurs only once in a cell cycle and might also act downstream of FtsZ assembly.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Escherichia coli/fisiologia , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA