Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Pediatr Res ; 90(3): 549-558, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33070161

RESUMO

BACKGROUND: Chorioamnionitis, an intrauterine infection of the placenta and fetal membranes, is a common risk factor for adverse pulmonary outcomes in premature infants including BPD, which is characterized by an arrest in alveolar development. As endogenous epithelial stem/progenitor cells are crucial for organogenesis and tissue repair, we examined whether intrauterine inflammation negatively affects these essential progenitor pools. METHODS: In an ovine chorioamnionitis model, fetuses were intra-amniotically exposed to LPS, 2d or 7d (acute inflammation) before preterm delivery at 125d of gestation, or to intra-amniotic Ureaplasma parvum for 42d (chronic inflammation). Lung function, pulmonary endogenous epithelial stem/progenitor pools, and downstream functional markers were studied. RESULTS: Lung function was improved in the 7d LPS and 42d Ureaplasma groups. However, intrauterine inflammation caused a loss of P63+ basal cells in proximal airways and reduced SOX-9 expression and TTF-1+ Club cells in distal airways. Attenuated type-2 cell numbers were associated with lower proliferation and reduced type-1 cell marker Aqp5 expression, indicative for impaired progenitor function. Chronic Ureaplasma infection only affected distal airways, whereas acute inflammation affected stem/progenitor populations throughout the lungs. CONCLUSIONS: Acute and chronic prenatal inflammation improve lung function at the expense of stem/progenitor alterations that potentially disrupt normal lung development, thereby predisposing to adverse postnatal outcomes. IMPACT: In this study, prenatal inflammation improved lung function at the expense of stem/progenitor alterations that potentially disrupt normal lung development, thereby predisposing to adverse postnatal outcomes. Importantly, we demonstrate that these essential alterations can already be initiated before birth. So far, stem/progenitor dysfunction has only been shown postnatally. This study indicates that clinical protocols to target the consequences of perinatal inflammatory stress for the immature lungs should be initiated as early as possible and ideally in utero. Within this context, our data suggest that interventions, which promote function or repair of endogenous stem cells in the lungs, hold great promise.


Assuntos
Corioamnionite/patologia , Pulmão/patologia , Células-Tronco/patologia , Animais , Células Epiteliais/patologia , Feminino , Gravidez , Nascimento Prematuro , Ovinos
2.
STAR Protoc ; 3(2): 101361, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35573477

RESUMO

Mutational signatures have been identified in cancer genomes, providing information about the causes of cancer and treatment vulnerabilities. This protocol describes an assay to determine the genotoxic mechanisms underlying these signatures using cord-blood derived hematopoietic stem and progenitor cells (CB-HSPCs). CB-HSPCs have a low mutation background, enabling sensitive detection of mutations. First, CB-HSPCs are exposed in vitro, sorted, and clonally expanded. This expansion enables whole-genome sequencing to detect the mutation load and respective patterns induced during genotoxic exposure. For complete details on the use and execution of this protocol, please refer to de Kanter et al. (2021).


Assuntos
Sangue Fetal , Células-Tronco Hematopoéticas , Dano ao DNA , Genoma , Humanos , Sequenciamento Completo do Genoma
3.
Cancer Discov ; 12(8): 1860-1872, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35678530

RESUMO

Childhood cancer survivors are confronted with various chronic health conditions like therapy-related malignancies. However, it is unclear how exposure to chemotherapy contributes to the mutation burden and clonal composition of healthy tissues early in life. Here, we studied mutation accumulation in hematopoietic stem and progenitor cells (HSPC) before and after cancer treatment of 24 children. Of these children, 19 developed therapy-related myeloid neoplasms (t-MN). Posttreatment HSPCs had an average mutation burden increase comparable to what treatment-naïve cells accumulate during 16 years of life, with excesses up to 80 years. In most children, these additional mutations were induced by clock-like processes, which are also active during healthy aging. Other patients harbored mutations that could be directly attributed to treatments like platinum-based drugs and thiopurines. Using phylogenetic inference, we demonstrate that most t-MN in children originate after the start of treatment and that leukemic clones become dominant during or directly after chemotherapy exposure. SIGNIFICANCE: Our study shows that chemotherapy increases the mutation burden of normal blood cells in cancer survivors. Only few drugs damage the DNA directly, whereas in most patients, chemotherapy-induced mutations are caused by processes similar to those present during normal aging. This article is highlighted in the In This Issue feature, p. 1825.


Assuntos
Antineoplásicos , Segunda Neoplasia Primária , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Criança , Células-Tronco Hematopoéticas/patologia , Humanos , Mieloma Múltiplo/induzido quimicamente , Mieloma Múltiplo/genética , Mutação , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/genética , Segunda Neoplasia Primária/induzido quimicamente , Segunda Neoplasia Primária/genética , Segunda Neoplasia Primária/patologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA