Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 108(4): 1055-1062, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32629078

RESUMO

PURPOSE: In a randomized focal dose escalation radiation therapy trial for prostate cancer (FLAME), up to 95 Gy was prescribed to the tumor in the dose-escalated arm, with 77 Gy to the entire prostate in both arms. As dose constraints to organs at risk had priority over dose escalation and suboptimal planning could occur, we investigated how well the dose to the tumor was boosted. We developed an anatomy-based prediction model to identify plans with suboptimal tumor dose and performed replanning to validate our model. METHODS AND MATERIALS: We derived dose-volume parameters from planned dose distributions of 539 FLAME trial patients in 4 institutions and compared them between both arms. In the dose-escalated arm, we determined overlap volume histograms and derived features representing patient anatomy. We predicted tumor D98% with a linear regression on anatomic features and performed replanning on 21 plans. RESULTS: In the dose-escalated arm, the median tumor D50% and D98% were 93.0 and 84.7 Gy, and 99% of the tumors had a dose escalation greater than 82.4 Gy (107% of 77 Gy). In both arms organs at risk constraints were met. Five out of 73 anatomic features were found to be predictive for tumor D98%. Median predicted tumor D98% was 4.4 Gy higher than planned D98%. Upon replanning, median tumor D98% increased by 3.0 Gy. A strong correlation between predicted increase in D98% and realized increase upon replanning was found (ρ = 0.86). CONCLUSIONS: Focal dose escalation in prostate cancer was feasible with a dose escalation to 99% of the tumors. Replanning resulted in an increased tumor dose that correlated well with the prediction model. The model was able to identify tumors on which a higher boost dose could be planned. The model has potential as a quality assessment tool in focal dose escalated treatment plans.


Assuntos
Órgãos em Risco/efeitos da radiação , Neoplasias da Próstata/radioterapia , Intervalo Livre de Doença , Estudos de Viabilidade , Humanos , Bases de Conhecimento , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Modelos Teóricos , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/mortalidade , Órgãos em Risco/diagnóstico por imagem , Próstata , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangue , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , Lesões por Radiação/prevenção & controle , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Reto , Reprodutibilidade dos Testes , Glândulas Seminais , Tomografia Computadorizada por Raios X , Carga Tumoral/efeitos da radiação
2.
Front Oncol ; 9: 1264, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31867266

RESUMO

Purpose: Quantitative MRI reflects tissue characteristics. As possible changes during radiotherapy may lead to treatment adaptation based on response, we here assessed if such changes during treatment can be detected. Methods and Materials: In the hypoFLAME trial patients received ultra-hypofractionated prostate radiotherapy with an integrated boost to the tumor in 5 weekly fractions. We analyzed T2 and ADC maps of 47 patients that were acquired in MRI exams prior to and during radiotherapy, and performed rigid registrations based on the prostate contour on anatomical T2-weighted images. We analyzed median T2 and ADC values in three regions of interest (ROIs): the central gland (CG), peripheral zone (PZ), and tumor. We analyzed T2 and ADC changes during treatment and compared patients with and without hormonal therapy. We tested changes during treatment for statistical significance with Wilcoxon signed rank tests. Using confidence intervals as recommended from test-retest measurements, we identified persistent T2 and ADC changes during treatment. Results: In the CG, median T2 and ADC values significantly decreased 12 and 8%, respectively, in patients that received hormonal therapy, while in the PZ these values decreased 17 and 18%. In the tumor no statistically significant change was observed. In patients that did not receive hormonal therapy, median ADC values in the tumor increased with 20%, while in the CG and PZ no changes were observed. Persistent T2 changes in the tumor were found in 2 out of 24 patients, while none of the 47 patients had persistent ADC changes. Conclusions: Weekly quantitative MRI could identify statistically significant ADC changes in the tumor in patients without hormonal therapy. On a patient level few persistent T2 changes in the tumor were observed. Long-term follow-up is required to relate the persistent T2 and ADC changes to outcome and evaluate the applicability of quantitative MRI for response based treatment adaptation.

3.
Radiother Oncol ; 128(2): 321-326, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29731160

RESUMO

PURPOSE: To date no guidelines are available for contouring prostate cancer inside the gland, as visible on multiparametric (mp-) MRI. We assessed inter-institutional differences in interpretation of mp-MRI in the multicenter phase III FLAME trial. METHODS: We analyzed clinical delineations on mp-MRI and clinical characteristics from 260 patients across three institutes. We performed a logistic regression analysis to examine each institute's weighting of T2w, ADC and Ktrans intensity maps in the delineation of the cancer. As reviewing of all delineations by an expert panel is not feasible, we made a selection based on discrepancies between a published tumor probability (TP) model and each institute's clinical delineations using Areas Under the ROC Curve (AUC) analysis. RESULTS: Regression coefficients for the three institutes were -0.07, -0.27 and -0.11 for T2w, -1.96, -0.53 and -0.65 for ADC and 0.15, 0.20 and 0.62 for Ktrans, with significant differences between institutes for ADC and Ktrans. AUC analysis showed median AUC values of 0.92, 0.80 and 0.79. Five patients with lowest AUC values were reviewed by a uroradiologist. CONCLUSION: Regression coefficients revealed considerably different interpretations of mp-MRI in tumor contouring between institutes and demonstrated the need for contouring guidelines. Based on AUC values outlying delineations could efficiently be identified for review.


Assuntos
Neoplasias da Próstata/patologia , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias da Próstata/radioterapia , Curva ROC
4.
Phys Med Biol ; 62(14): 5575-5588, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28557799

RESUMO

Dose painting by numbers (DPBN) refers to a voxel-wise prescription of radiation dose modelled from functional image characteristics, in contrast to dose painting by contours which requires delineations to define the target for dose escalation. The direct relation between functional imaging characteristics and DPBN implies that random variations in images may propagate into the dose distribution. The stability of MR-only prostate cancer treatment planning based on DPBN with respect to these variations is as yet unknown. We conducted a test-retest study to investigate the stability of DPBN for prostate cancer in a semi-automated MR-only treatment planning workflow. Twelve patients received a multiparametric MRI on two separate days prior to prostatectomy. The tumor probability (TP) within the prostate was derived from image features with a logistic regression model. Dose mapping functions were applied to acquire a DPBN prescription map that served to generate an intensity modulated radiation therapy (IMRT) treatment plan. Dose calculations were done on a pseudo-CT derived from the MRI. The TP and DPBN map and the IMRT dose distribution were compared between both MRI sessions, using the intraclass correlation coefficient (ICC) to quantify repeatability of the planning pipeline. The quality of each treatment plan was measured with a quality factor (QF). Median ICC values for the TP and DPBN map and the IMRT dose distribution were 0.82, 0.82 and 0.88, respectively, for linear dose mapping and 0.82, 0.84 and 0.94 for square root dose mapping. A median QF of 3.4% was found among all treatment plans. We demonstrated the stability of DPBN radiotherapy treatment planning in prostate cancer, with excellent overall repeatability and acceptable treatment plan quality. Using validated tumor probability modelling and simple dose mapping techniques it was shown that despite day-to-day variations in imaging data still consistent treatment plans were obtained.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Masculino , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA