Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Thromb J ; 19(1): 81, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34736478

RESUMO

BACKGROUND: Cerebral venous sinus thrombosis (CVST) is a relatively rare, but potentially lethal condition. In approximately 15% of the patients, the cause of CVST remains unclear. Conventional clotting tests such as prothrombin time and activated partial thromboplastin time are not sensitive enough to detect prothrombotic conditions nor mild haemostatic abnormalities. The calibrated automated thrombogram (CAT) is a physiological function test that might be able to detect minor aberrations in haemostasis. Therefore, we aimed to detect the presence of a prothrombotic state in patients who endured idiopathic CVST with the CAT assay. METHODS: Five adult patients with an idiopathic, radiologically proven CVST that had been admitted during the past 3 years were included in this study. The control group consisted of five age/gender matched healthy volunteers. Exclusion criteria were known haematological disorders, malignancy (current/past) or hormonal and anticoagulant therapy recipients. We obtained venous blood samples from all participants following cessation of anticoagulation. Using the CAT assay, we determined lag time, normalized endogenous thrombin potential (ETP), ETP reduction and normalized peak height. In addition, prothrombin concentrations were determined. RESULTS: We found no significant differences in lag time (4.7 min [4.5-4.9] vs 5.3 min [3.7-5.7], p = 0.691), normalized ETP (142% [124-148] vs 124% [88-138], p = 0.222), ETP reduction (29% [26-35] vs 28% [24-58], p > 0.999), and normalized peak height (155% [153-175] vs 137 [94-154], p = 0.056) between patients and their age/gender matched controls. In addition, prothrombin concentrations did not significantly differ between patients and controls (120% [105-132] vs 127% [87-139], p > 0.999). CONCLUSION: Reasons for absent overt hypercoagulability within this study population may be the small patient sample, long time since the event (e.g. 3 years) and avoidance of acquired risk factors like oral contraception. Given the fact that CVST is a serious condition with a more than negligible risk of venous thrombosis event recurrence, exclusion of clinically relevant hypercoagulability remains a challenging topic to further study at the acute and later time points, particularly in patients with idiopathic CVST.

2.
Heart Lung Circ ; 30(11): 1681-1693, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34393049

RESUMO

BACKGROUND: Arterial stiffening is a hallmark of vascular ageing and a consequence of many diseases including diabetes mellitus. Methylglyoxal (MGO), a highly reactive α-dicarbonyl mainly formed during glycolysis, has emerged as a potential contributor to the development of arterial stiffness. MGO reacts with arginine and lysine residues in proteins to form stable advanced glycation endproducts (AGEs). AGEs may contribute to arterial stiffening by increased cross-linking of collagen within the extracellular matrix (ECM), by altering the vascular structure, and by triggering inflammatory and oxidative pathways. Although arterial stiffness is mainly determined by ECM and vascular smooth muscle cell function, the effects of MGO and MGO-derived AGEs on these structures have not been thoroughly reviewed to date. METHODS AND RESULTS: We conducted a PubMed search without filtering for publication date which resulted in 16 experimental and 22 clinical studies eligible for inclusion. Remarkably, none of the experimental and only three of the clinical studies specifically mentioned MGO-derived AGEs. Almost all studies reported an association between arterial stiffness and AGE accumulation in the arterial wall or increased plasma AGEs. Other studies report reduced arterial stiffness in experimental models upon administration of AGE-breakers. CONCLUSIONS: No papers published to date directly show an association between MGO or MGO-derived AGEs and arterial stiffening. The relevance of the various underlying mechanisms is not yet clear, which is particularly due to methodological challenges in the detection of MGO and MGO-derived AGEs at the molecular, intra- and pericellular, and structural levels, as well as in challenges in the assessment of intrinsic arterial wall properties at ECM- and tissue levels.


Assuntos
Aldeído Pirúvico , Rigidez Vascular , Matriz Extracelular
3.
Biomech Model Mechanobiol ; 22(5): 1607-1623, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37129690

RESUMO

Arteries exhibit fully nonlinear viscoelastic behaviours (i.e. both elastically and viscously nonlinear). While elastically nonlinear arterial models are well established, effective mathematical descriptions of nonlinear viscoelasticity are lacking. Quasi-linear viscoelasticity (QLV) offers a convenient way to mathematically describe viscoelasticity, but its viscous linearity assumption is unsuitable for whole-wall vascular applications. Conversely, application of fully nonlinear viscoelastic models, involving deformation-dependent viscous parameters, to experimental data is impractical and often reduces to identifying specific solutions for each tested loading condition. The present study aims to address this limitation: By applying QLV theory at the wall constituent rather than at the whole-wall level, the deformation-dependent relative contribution of the constituents allows to capture nonlinear viscoelasticity with a unique set of deformation-independent model parameters. Five murine common carotid arteries were subjected to a protocol of quasi-static and harmonic, pseudo-physiological biaxial loading conditions to characterise their viscoelastic behaviour. The arterial wall was modelled as a constrained mixture of an isotropic elastin matrix and four families of collagen fibres. Constituent-based QLV was implemented by assigning different relaxation functions to collagen- and elastin-borne parts of the wall stress. Nonlinearity in viscoelasticity was assessed via the pressure dependency of the dynamic-to-quasi-static stiffness ratio. The experimentally measured ratio increased with pressure, from 1.03 [Formula: see text] 0.03 (mean [Formula: see text] standard deviation) at 80-40 mmHg to 1.58 [Formula: see text] 0.22 at 160-120 mmHg. Constituent-based QLV captured well this trend by attributing the wall viscosity predominantly to collagen fibres, whose recruitment starts at physiological pressures. In conclusion, constituent-based QLV offers a practical and effective solution to model arterial viscoelasticity.


Assuntos
Elastina , Dinâmica não Linear , Animais , Camundongos , Viscosidade , Colágeno , Artéria Carótida Primitiva , Elasticidade , Estresse Mecânico , Modelos Biológicos
4.
Front Physiol ; 12: 814434, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095571

RESUMO

Accurate information on vascular smooth muscle cell (VSMC) content, orientation, and distribution in blood vessels is indispensable to increase understanding of arterial remodeling and to improve modeling of vascular biomechanics. We have previously proposed an analysis method to automatically characterize VSMC orientation and transmural distribution in murine carotid arteries under well-controlled biomechanical conditions. However, coincident nuclei, erroneously detected as one large nucleus, were excluded from the analysis, hampering accurate VSMC content characterization and distorting transmural distributions. In the present study, therefore, we aim to (1) improve the previous method by adding a "nucleus splitting" procedure to split coinciding nuclei, (2) evaluate the accuracy of this novel method, and (3) test this method in a mouse model of VSMC apoptosis. After euthanasia, carotid arteries from SM22α-hDTR Apoe -/- and control Apoe -/- mice were bluntly dissected, excised, mounted in a biaxial biomechanical tester and brought to in vivo axial stretch and a pressure of 100 mmHg. Nuclei and elastin fibers were then stained using Syto-41 and Eosin-Y, respectively, and imaged using 3D two-photon laser scanning microscopy. Nuclei were segmented from images and coincident nuclei were split. The nucleus splitting procedure determines the likelihood that voxel pairs within coincident nuclei belong to the same nucleus and utilizes these likelihoods to identify individual nuclei using spectral clustering. Manual nucleus counts were used as a reference to assess the performance of our splitting procedure. Before and after splitting, automatic nucleus counts differed -26.6 ± 9.90% (p < 0.001) and -1.44 ± 7.05% (p = 0.467) from the manual reference, respectively. Whereas the slope of the relative difference between the manual and automated counts as a function of the manual count was significantly negative before splitting (p = 0.008), this slope became insignificant after splitting (p = 0.653). Smooth muscle apoptosis led to a 33.7% decrease in VSMC density (p = 0.008). Nucleus splitting improves the accuracy of automated cell content quantification in murine carotid arteries and overcomes the progressively worsening problem of coincident nuclei with increasing cell content in vessels. The presented image analysis framework provides a robust tool to quantify cell content, orientation, shape, and distribution in vessels to inform experimental and advanced computational studies on vascular structure and function.

5.
Sci Rep ; 11(1): 2671, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514757

RESUMO

Ex vivo characterisation of arterial biomechanics enables detailed discrimination of the various cellular and extracellular contributions to arterial stiffness. However, ex vivo biomechanical studies are commonly performed under quasi-static conditions, whereas dynamic biomechanical behaviour (as relevant in vivo) may differ substantially. Hence, we aim to (1) develop an integrated set-up for quasi-static and dynamic biaxial biomechanical testing, (2) quantify set-up reproducibility, and (3) illustrate the differences in measured arterial stiffness between quasi-static and dynamic conditions. Twenty-two mouse carotid arteries were mounted between glass micropipettes and kept fully vasodilated. While recording pressure, axial force (F), and inner diameter, arteries were exposed to (1) quasi-static pressure inflation from 0 to 200 mmHg; (2) 300 bpm dynamic pressure inflation (peaking at 80/120/160 mmHg); and (3) axial stretch (λz) variation at constant pressures of 10/60/100/140/200 mmHg. Measurements were performed in duplicate. Single-point pulse wave velocities (PWV; Bramwell-Hill) and axial stiffness coefficients (cax = dF/dλz) were calculated at the in vivo value of λz. Within-subject coefficients of variation were ~ 20%. Dynamic PWVs were consistently higher than quasi-static PWVs (p < 0.001); cax increased with increasing pressure. We demonstrated the feasibility of ex vivo biomechanical characterisation of biaxially-loaded murine carotid arteries under pulsatile conditions, and quantified reproducibility allowing for well-powered future study design.


Assuntos
Pressão Sanguínea , Artérias Carótidas , Modelos Cardiovasculares , Animais , Fenômenos Biomecânicos , Velocidade do Fluxo Sanguíneo , Camundongos , Análise de Onda de Pulso , Rigidez Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA