Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37050513

RESUMO

We hereby present a novel "grafting-to"-like approach for the covalent attachment of plasmonic nanoparticles (PNPs) onto whispering gallery mode (WGM) silica microresonators. Mechanically stable optoplasmonic microresonators were employed for sensing single-particle and single-molecule interactions in real time, allowing for the differentiation between binding and non-binding events. An approximated value of the activation energy for the silanization reaction occurring during the "grafting-to" approach was obtained using the Arrhenius equation; the results agree with available values from both bulk experiments and ab initio calculations. The "grafting-to" method combined with the functionalization of the plasmonic nanoparticle with appropriate receptors, such as single-stranded DNA, provides a robust platform for probing specific single-molecule interactions under biologically relevant conditions.

2.
Chemistry ; 26(54): 12388-12396, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32672356

RESUMO

This work reports on a novel and versatile approach to control the structure of metal-organic framework (MOFs) films by using polymeric brushes as 3D primers, suitable for triggering heterogeneous MOF nucleation. As a proof-of-concept, this work explores the use of poly(1-vinylimidazole) brushes primer obtained via surface-initiated atom transfer radical polymerization (SI-ATRP) for the synthesis of Zn-based ZIF-8 MOF films. By modifying the grafting density of the brushes, smooth porous films were obtained featuring inherently hydrophobic microporosity arising from ZIF-8 structure, and an additional constructional interparticle mesoporosity, which can be employed for differential adsorption of targeted adsorbates. It was found that the grafting density modulates the constructional porosity of the films obtained; higher grafting densities result in more compact structures, while lower grafting density generates increasingly inhomogeneous films with a higher proportion of interparticle constructional porosity.

3.
Soft Matter ; 15(7): 1640-1650, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30676599

RESUMO

Supramolecular self-assembly of molecular building blocks represents a powerful "nanoarchitectonic" tool to create new functional materials with molecular-level feature control. Here, we propose a simple method to create tunable phosphate/polyamine-based films on surfaces by successive assembly of poly(allylamine hydrochloride) (PAH)/phosphate anions (Pi) supramolecular networks. The growth of the films showed a great linearity and regularity with the number of steps. The coating thickness can be easily modulated by the bulk concentration of PAH and the deposition cycles. The PAH/Pi networks showed chemical stability between pH 4 and 10. The transport properties of the surface assemblies formed from different deposition cycles were evaluated electrochemically by using different redox probes in aqueous solution. The results revealed that either highly permeable films or efficient anion transport selectivity can be created by simply varying the concentration of PAH. This experimental evidence indicates that this new strategy of supramolecular self-assembly can be useful for the rational construction of single polyelectrolyte nanoarchitectures with multiple functionalities.

4.
Phys Chem Chem Phys ; 21(41): 22947-22954, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31598616

RESUMO

Layer by layer assembly of polyelectrolytes with proteins is a convenient tool for the development of functional biomaterials. Most of the studies presented in the literature are based on the electrostatic interaction between components of opposite charges, limiting the assembly possibilities. However, this process can be tuned by modifying the environment where the main constituents are dissolved. In this work, the electron transfer behavior between an electroactive polyelectrolyte (polyallylamine derivatized with an osmium complex) and a redox enzyme (glucose oxidase) is studied by assembling them in the presence of phosphate ions at different ionic strengths. Our results show that the environment from which the assembly is constructed has a significant effect on the electrochemical response. Notably, the polyelectrolyte dissolved in the presence of phosphate at high ionic strength presents a globular structure which is preserved after adsorption with substantial effects on the buildup of the multilayer system, improving the electron transfer process through the film.

5.
Langmuir ; 34(12): 3711-3719, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29480725

RESUMO

Responsive interfacial architectures of practical interest commonly require the combination of conflicting properties in terms of their demand upon material structure. Switchable stiffness, wettability, and permeability, key features for tissue engineering applications, are in fact known to be exclusively interdependent. Here, we present a nanoarchitectonic approach that decouples these divergent properties by the use of thermoresponsive microgels as building blocks for the construction of three-dimensional arrays of interconnected pores. Layer-by-layer assembled poly( N-isopropylacrylamide- co-methacrylic acid) microgel films were found to exhibit an increase in hydrophobicity, stiffness, and adhesion properties upon switching the temperature from below to above the lower critical solution temperature, whereas the permeability of redox probes through the film remained unchanged. Our findings indicate that the switch in hydrophilicity and nanomechanical properties undergone by the microgels does not compromise the porosity of the film, thus allowing the free diffusion of redox probes through the polymer-free volume of the submicrometer pores. This novel approach for decoupling conflicting properties provides a strategic route for creating tailorable scaffolds with unforeseen functionalities.

6.
Soft Matter ; 14(10): 1939-1952, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29479625

RESUMO

Supramolecular self-assembly is of paramount importance for the development of novel functional materials with molecular-level feature control. In particular, the interest in creating well-defined stratified multilayers through simple methods using readily available building blocks is motivated by a multitude of research activities in the field of "nanoarchitectonics" as well as evolving technological applications. Herein, we report on the facile preparation and application of highly organized stacked multilayers via layer-by-layer assembly of lipid-like surfactants and polyelectrolytes. Polyelectrolyte multilayers with high degree of stratification of the internal structure were constructed through consecutive assembly of polyallylamine and dodecyl phosphate, a lipid-like surfactant that act as a structure-directing agent. We show that multilayers form well-defined lamellar hydrophilic/hydrophobic domains oriented parallel to the substrate. More important, X-ray reflectivity characterization conclusively revealed the presence of Bragg peaks up to fourth order, evidencing the highly stratified structure of the multilayer. Additionally, hydrophobic lamellar domains were used as hosts for ferrocene in order to create an electrochemically active film displaying spatially-addressed redox units. Stacked multilayers were then assembled integrating redox-tagged polyallylamine and glucose oxidase into the stratified hydrophilic domains. Bioelectrocatalysis and "redox wiring" in the presence of glucose was demonstrated to occur inside the stratified multilayer.

7.
Soft Matter ; 13(13): 2453-2464, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28287232

RESUMO

The surface properties of soft nanostructured hydrogels are crucial in the design of responsive materials that can be used as platforms to create adaptive devices. The lower critical solution temperature (LCST) of thermo-responsive hydrogels such as poly(N-isopropylacrylamide) (PNIPAm) can be modified by introducing a hydrophilic monomer to create a wide range of thermo-responsive micro-/nano-structures in a large temperature range. Using surface initiation atom-transfer radical polymerization in synthesized anodized aluminum oxide templates, we designed, fabricated, and characterized thermo-responsive nanopillars based on PNIPAm hydrogels with tunable mechanical properties by incorporating acrylamide monomers (AAm). In addition to their LCST, the incorporation of a hydrophilic entity in the nanopillars based on PNIPAm has abruptly changed the topological and mechanical properties of our system. To gain an insight into the mechanical properties of the nanostructure, its hydrophilic/hydrophobic behavior and topological characteristics, atomic force microscopy, molecular dynamics simulations and water contact angle studies were combined. When changing the nanopillar composition, a significant and opposite variation was observed in their mechanical properties. As temperature increased above the LCST, the stiffness of PNIPAm nanopillars, as expected, did so too, in contrast to the stiffness of PNIPAm-AAm nanopillars that decreased significantly. The molecular dynamics simulations proposed a local molecular rearrangement in our nanosystems at the LCST. The local aggregation of NIPAm segments near the center of the nanopillars displaced the hydrophilic AAm units towards the surface of the structure leading to contact with the aqueous environment. This behavior was confirmed via contact angle measurements below and above the LCST.

8.
Nano Lett ; 16(10): 6529-6533, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27648741

RESUMO

Optical printing has been proved a versatile and simple method to fabricate arbitrary arrays of colloidal nanoparticles (NPs) on substrates. Here, we show that is also a powerful tool for studying chemical reactions at the single NP level. We demonstrate that 60 nm gold NPs immobilized by optical printing can be used as seeds to obtain larger NPs by plasmon-assisted reduction of aqueous HAuCl4. The final size of each NP is simply controlled by the irradiation time. Moreover, we show conditions for which the growth occurs preferentially in the direction of light polarization, enabling the in situ anisotropic reshaping of the NPs in predetermined orientations.

9.
PLoS One ; 16(5): e0251411, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33974655

RESUMO

Cells exert traction forces on the extracellular matrix to which they are adhered through the formation of focal adhesions. Spatial-temporal regulation of traction forces is crucial in cell adhesion, migration, cellular division, and remodeling of the extracellular matrix. By cultivating cells on polyacrylamide hydrogels of different stiffness we were able to investigate the effects of substrate stiffness on the generation of cellular traction forces by Traction Force Microscopy (TFM), and characterize the molecular dynamics of the focal adhesion protein zyxin by Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Recovery After Photobleaching (FRAP). As the rigidity of the substrate increases, we observed an increment of both, cellular traction generation and zyxin residence time at the focal adhesions, while its diffusion would not be altered. Moreover, we found a positive correlation between the traction forces exerted by cells and the residence time of zyxin at the substrate elasticities studied. We found that this correlation persists at the subcellular level, even if there is no variation in substrate stiffness, revealing that focal adhesions that exert greater traction present longer residence time for zyxin, i.e., zyxin protein has less probability to dissociate from the focal adhesion.


Assuntos
Estresse Mecânico , Zixina/química , Citoesqueleto de Actina/efeitos dos fármacos , Amidas/farmacologia , Animais , Bovinos , Adesão Celular , Citocalasina D/farmacologia , Células Endoteliais , Recuperação de Fluorescência Após Fotodegradação , Adesões Focais , Proteínas de Fluorescência Verde , Microscopia Intravital , Cinética , Lasers , Camundongos , Camundongos Endogâmicos BALB C , Piridinas/farmacologia , Proteínas Recombinantes de Fusão/química , Vinculina/química , Quinases Associadas a rho/antagonistas & inibidores
10.
Carbohydr Polym ; 261: 117871, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766358

RESUMO

Replacing packaging plastics with biodegradable active materials is an emerging concern. In this context, thermoplastic starch (TPS) films and nanocomposites containing different concentrations of silver nanoparticles synthetized with starch and yerba mate (TPS-AgNP1: 0.006 wt.% and TPS-AgNP2: 0.015 wt.%) were developed by extrusion and compression molding. Spherical AgNP of 20-130 nm were obtained after the green synthesis and excellent adhesion between AgNP and the matrix was observed. Consequently, both composites exhibited higher stiffness and tensile strength values than TPS, indicating a reinforcing effect of AgNP. TPS-AgNP1 showed the highest strain at break and toughness values, and TPS-AgNP2 presented the lowest moisture content and ability to delay E. coli growth. Additionally, all materials disintegrated after 4 weeks of burial and resulted thermally stable up to 240 °C. This investigation provides a convenient and inexpensive way to develop starch-based nanocomposites with improved properties which appear to be promising as active packaging materials.

11.
Opt Express ; 17(13): 10642-7, 2009 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-19550460

RESUMO

We present measurements of the optical second-harmonic generation in self assembled multilayer films of PAZO/PAH polymers with the aim to investigate molecular order in the layer-by-layer architecture. The experiments are performed in transmission, using a femtosecond Ti:Sa pulsed laser, which allows a more accurate determination of the amplitude of the second harmonic signal, without interference fringes usually present in nanosecond experiments. We found that the first bilayer, in contact with the substrate, presents a broad distribution of the orientation of the molecules, while the addition of successive bilayers (up to 12) produces ordering of the molecules with a small tilt angle respect to the surface normal. This result, together with the monotonic increment of the second harmonic signal with the number of layers indicates that the molecules grow orderly assembled in these films.


Assuntos
Óptica e Fotônica , Eletrólitos , Íons , Membranas Artificiais , Estrutura Molecular , Poliaminas/química , Polímeros/química , Reprodutibilidade dos Testes , Propriedades de Superfície , Fatores de Tempo , Titânio/química
12.
Polymers (Basel) ; 11(2)2019 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-30960274

RESUMO

The tunable swelling and mechanical properties of nanostructures polymers are crucial parameters for the creation of adaptive devices to be used in diverse fields, such as drug delivery, nanomedicine, and tissue engineering. We present the use of anodic aluminum oxide templates as a nanoreactor to copolymerize butyl methacrylate and 2-hydroxyethyl acrylate under radical conditions. The copolymer obtained under confinement showed significant differences with respect to the same copolymer obtained in bulk conditions. Molecular weights, molecular weight dispersities, Young's modulus, and wetting behaviors were significantly modified. The combination of selected monomers allowed us to obtain nanopillar structures with an interesting softening surface and extraordinary swelling capacity that could be of special interest to surface science and specifically, cell culture.

13.
Sci Rep ; 8(1): 9788, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955093

RESUMO

Mechanical stimuli play a key role in many cell functions such as proliferation, differentiation and migration. In the mammary gland, mechanical signals such as the distension of mammary epithelial cells due to udder filling are proposed to be directly involved during lactation and involution. However, the evolution of focal adhesions -specialized multiprotein complexes that mechanically connect cells with the extracellular matrix- during the mammary gland development, as well as the influence of the mechanical stimuli involved, remains unclear. Here we present the use of an equibiaxial stretching device for exerting a sustained normal strain to mammary epithelial cells while quantitatively assessing cell responses by fluorescence imaging techniques. Using this approach, we explored changes in focal adhesion dynamics in HC11 mammary cells in response to a mechanical sustained stress, which resembles the physiological stimuli. We studied the relationship between a global stress and focal adhesion assembly/disassembly, observing an enhanced persistency of focal adhesions under strain as well as an increase in their size. At a molecular level, we evaluated the mechanoresponses of vinculin and zyxin, two focal adhesion proteins postulated as mechanosensors, observing an increment in vinculin molecular tension and a slower zyxin dynamics while increasing the applied normal strain.


Assuntos
Células Epiteliais/metabolismo , Adesões Focais/metabolismo , Imageamento Tridimensional , Glândulas Mamárias Animais/citologia , Mecanotransdução Celular , Estresse Mecânico , Animais , Sobrevivência Celular , Feminino , Fluorescência , Recuperação de Fluorescência Após Fotodegradação , Cinética , Camundongos Endogâmicos BALB C , Fibras de Estresse/metabolismo , Vinculina/metabolismo , Zixina/metabolismo
14.
Biomater Sci ; 6(8): 2230-2247, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29978861

RESUMO

The modulation of cell adhesion via biologically inspired materials plays a key role in the development of realistic platforms to envisage not only mechanistic descriptions of many physiological and pathological processes but also new biointerfacial designs compatible with the requirements of biomedical devices. In this work, we show that the cell adhesion and proliferation of three different cell lines can be easily manipulated by using a novel biologically inspired supramolecular coating generated via dip coating of the working substrates in an aqueous solution of polyallylamine in the presence of phosphate anions-a simple one-step modification procedure. Our results reveal that selective cell adhesion can be controlled by varying the deposition time of the coating. Cell proliferation experiments showed a cell type-dependent quasi-exponential growth demonstrating the nontoxic properties of the supramolecular platform. After reaching a certain surface coverage, the supramolecular films based on phosphate-polyamine networks displayed antiadhesive activity towards cells, irrespective of the cell type. However and most interestingly, these antiadherent substrates developed strong adhesive properties after thermal annealing at 37 °C for 3 days. These results were interpreted based on the changes in the coating hydrophilicity, topography and stiffness, with the latter being assessed by atomic force microscopy imaging and indentation experiments. The reported approach is simple, robust and flexible, and would offer opportunities for the development of tunable, biocompatible interfacial architectures to control cell attachment for various biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Substâncias Macromoleculares/química , Fosfatos/química , Poliaminas/química , Células 3T3 , Absorção Fisiológica , Animais , Materiais Biocompatíveis/síntese química , Adesão Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Células HeLa , Humanos , Cinética , Substâncias Macromoleculares/síntese química , Camundongos , Microscopia de Força Atômica , Tamanho da Partícula , Molhabilidade
15.
J Colloid Interface Sci ; 518: 92-101, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29448230

RESUMO

We present the covalent modification of a Pani-like conducting polymer (polyaminobenzylamine, PABA) by grafting of a polyelectrolyte brush (poly [2-(methacryloyloxy)-ethyl-trimethylammonium chloride], PMETAC). As PABA has extra pendant amino moieties, the grafting procedure does not affect the backbone nitrogen atoms that are implicated in the electronic structure of the conducting polymers. Moreover, perchlorate anions interact very strongly with the quaternary ammonium pendant groups of PMETAC through ion pairing. Therefore, the grafting does not only keep the electroactivity of PABA in aqueous solutions but it adds the ion-actuation properties of the PMETAC brush to the modified electrode as demonstrated by contact angle measurements and electrochemical methods. In this way, the conjugation of the electron transfer properties of the conducting polymer with the anion responsiveness of the integrated brush renders perchlorate actuation of the electrochemical response. These results constitute a rational integration of nanometer-sized polymer building blocks that yields synergism of functionalities and illustrate the potentialities of nanoarchitectonics for pushing the limits of soft material science into the nanoworld.

16.
Nanoscale ; 10(3): 1189-1195, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29271438

RESUMO

The possibility of combining more than one stimulus-responsive property into a single material holds interesting potential for the creation of adaptive devices to be used in diverse fields such as drug delivery, nanomedicine and tissue engineering. This paper describes a novel material based on thermo-responsive PNIPAm nanopillars with amplified surface properties through the incorporation of Fe3O4 nanoparticles. The incorporation of magnetic nanoparticles into the nanopillars, prepared via surface-initiated atom-transfer radical polymerization in anodized aluminum oxide templates, sharply increased their stiffness and hydrophobicity when increasing the temperature above the volume phase transition temperature. Furthermore, their magnetic response turned out to be proportional to the amount of the incorporated nanoparticles. The possibility of sharply increasing the stiffness with a temperature variation close to the human body temperature paves the way to the application of these substrates as "smart" scaffolds for cell culture. Additionally, the presence of superparamagnetic nanoparticles in the nanopillars offers the possibility of using these nanostructured systems for magnetic hyperthermia.

17.
18.
Sci Rep ; 8(1): 3007, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445221

RESUMO

Axonal degeneration occurs in the developing nervous system for the appropriate establishment of mature circuits, and is also a hallmark of diverse neurodegenerative diseases. Despite recent interest in the field, little is known about the changes (and possible role) of the cytoskeleton during axonal degeneration. We studied the actin cytoskeleton in an in vitro model of developmental pruning induced by trophic factor withdrawal (TFW). We found that F-actin decrease and growth cone collapse (GCC) occur early after TFW; however, treatments that prevent axonal fragmentation failed to prevent GCC, suggesting independent pathways. Using super-resolution (STED) microscopy we found that the axonal actin/spectrin membrane-associated periodic skeleton (MPS) abundance and organization drop shortly after deprivation, remaining low until fragmentation. Fragmented axons lack MPS (while maintaining microtubules) and acute pharmacological treatments that stabilize actin filaments prevent MPS loss and protect from axonal fragmentation, suggesting that MPS destruction is required for axon fragmentation to proceed.


Assuntos
Actinas/metabolismo , Axônios/patologia , Membrana Celular/metabolismo , Cones de Crescimento/patologia , Plasticidade Neuronal , Degeneração Retrógrada , Espectrina/metabolismo , Citoesqueleto de Actina , Animais , Axônios/metabolismo , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Microtúbulos/metabolismo , Ratos , Ratos Wistar
19.
Rev Sci Instrum ; 88(1): 013703, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28147641

RESUMO

The adhesion of cells to the extracellular matrix is a hierarchical, force-dependent, multistage process that evolves at several temporal scales. An understanding of this complex process requires a precise measurement of forces and its correlation with protein responses in living cells. We present a method to quantitatively assess live cell responses to a local and specific mechanical stimulus. Our approach combines atomic force microscopy with fluorescence imaging. Using this approach, we evaluated the recruitment of adhesion proteins such as vinculin, focal adhesion kinase, paxillin, and zyxin triggered by applying forces in the nN regime to live cells. We observed in real time the development of nascent adhesion sites, evident from the accumulation of early adhesion proteins at the position where the force was applied. We show that the method can be used to quantify the recruitment characteristic times for adhesion proteins in the formation of focal complexes. We also found a spatial remodeling of the mature focal adhesion protein zyxin as a function of the applied force. Our approach allows the study of a variety of complex biological processes involved in cellular mechanotransduction.


Assuntos
Adesões Focais , Mecanotransdução Celular , Proteínas/química , Fenômenos Fisiológicos Celulares
20.
Cell Rep ; 14(12): 2797-808, 2016 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-26997278

RESUMO

Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10) through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as in the developing mouse brain. Although E10 inclusion greatly stimulates overall H3K9me2 levels, it does not affect G9a catalytic activity. Instead, E10 increases G9a nuclear localization. We show that the G9a E10(+) isoform is necessary for neuron differentiation and regulates the alternative splicing pattern of its own pre-mRNA, enhancing E10 inclusion. Overall, our findings indicate that by regulating its own alternative splicing, G9a promotes neuron differentiation and creates a positive feedback loop that reinforces cellular commitment to differentiation.


Assuntos
Processamento Alternativo , Histona-Lisina N-Metiltransferase/genética , Animais , Azepinas/farmacologia , Encéfalo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Núcleo Celular/metabolismo , Éxons , Transferência Ressonante de Energia de Fluorescência , Genes Reporter , Células HeLa , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Metilação/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Neurônios/citologia , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Quinazolinas/farmacologia , Interferência de RNA , Precursores de RNA/metabolismo , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA