RESUMO
Bacteria and fungi catabolize plant-derived aromatic compounds by funneling into one of seven dihydroxylated aromatic intermediates, which then undergo ring fission and conversion to TCA cycle intermediates. Two of these intermediates, protocatechuic acid and catechol, converge on ß-ketoadipate which is further cleaved to succinyl-CoA and acetyl-CoA. These ß-ketoadipate pathways have been well characterized in bacteria. The corresponding knowledge of these pathways in fungi is incomplete. Characterization of these pathways in fungi would expand our knowledge and improve the valorization of lignin-derived compounds. Here, we used homology to characterize bacterial or fungal genes to predict the genes involved in the ß-ketoadipate pathway for protocatechuate utilization in the filamentous fungus Aspergillus niger. We further used the following approaches to refine the assignment of the pathway genes: whole transcriptome sequencing to reveal genes upregulated in the presence of protocatechuic acid; deletion of candidate genes to observe their ability to grow on protocatechuic acid; determination by mass spectrometry of metabolites accumulated by deletion mutants; and enzyme assays of the recombinant proteins encoded by candidate genes. Based on the aggregate experimental evidence, we assigned the genes for the five pathway enzymes as follows: NRRL3_01405 (prcA) encodes protocatechuate 3,4-dioxygenase; NRRL3_02586 (cmcA) encodes 3-carboxy-cis,cis-muconate cyclase; NRRL3_01409 (chdA) encodes 3-carboxymuconolactone hydrolase/decarboxylase; NRRL3_01886 (kstA) encodes ß-ketoadipate:succinyl-CoA transferase; and NRRL3_01526 (kctA) encodes ß-ketoadipyl-CoA thiolase. Strain carrying ΔNRRL3_00837 could not grow on protocatechuic acid, suggesting that it is essential for protocatechuate catabolism. Its function is unknown as recombinant NRRL3_00837 did not affect the in vitro conversion of protocatechuic acid to ß-ketoadipate.
Assuntos
Aspergillus niger , Hidroxibenzoatos , Adipatos , Aspergillus niger/genética , Bactérias/metabolismoRESUMO
Although most of the tens of thousands of diatom species are photoautotrophs, a small number of heterotrophic species no longer photosynthesize. We sequenced the genome of a nonphotosynthetic diatom, Nitzschia Nitz4, to determine how carbon metabolism was altered in the wake of this trophic shift. Nitzschia Nitz4 has retained its plastid and plastid genome, but changes associated with the transition to heterotrophy were cellular-wide and included losses of photosynthesis-related genes from the nuclear and plastid genomes, elimination of isoprenoid biosynthesis in the plastid, and remodeling of mitochondrial glycolysis to maximize adenosine triphosphte (ATP) yield. The genome contains a ß-ketoadipate pathway that may allow Nitzschia Nitz4 to metabolize lignin-derived compounds. Diatom plastids lack an oxidative pentose phosphate pathway (oPPP), leaving photosynthesis as the primary source of NADPH to support essential biosynthetic pathways in the plastid and, by extension, limiting available sources of NADPH in nonphotosynthetic plastids. The genome revealed similarities between nonphotosynthetic diatoms and apicomplexan parasites for provisioning NADPH in their plastids and highlighted the ancestral absence of a plastid oPPP as a potentially important constraint on loss of photosynthesis, a hypothesis supported by the higher frequency of transitions to parasitism or heterotrophy in lineages that have a plastid oPPP.
Assuntos
Diatomáceas , Genomas de Plastídeos , Diatomáceas/genética , Processos Heterotróficos , Fotossíntese/genética , Filogenia , Plastídeos/genética , Plastídeos/metabolismoRESUMO
Lignin represents an untapped feedstock for the production of fuels and chemicals, but its intrinsic heterogeneity makes lignin valorization a significant challenge. In nature, many aerobic organisms degrade lignin-derived aromatic molecules through conserved central intermediates including catechol and protocatechuate. Harnessing this microbial approach offers potential for lignin upgrading in modern biorefineries, but significant technical development is needed to achieve this end. Catechol and protocatechuate are subjected to aromatic ring cleavage by dioxygenase enzymes that, depending on the position, ortho or meta relative to adjacent hydroxyl groups, result in different products that are metabolized through parallel pathways for entry into the TCA cycle. These degradation pathways differ in the combination of succinate, acetyl-CoA, and pyruvate produced, the reducing equivalents regenerated, and the amount of carbon emitted as CO2-factors that will ultimately impact the yield of the targeted product. As shown here, the ring-cleavage pathways can be interchanged with one another, and such substitutions have a predictable and substantial impact on product yield. We demonstrate that replacement of the catechol ortho degradation pathway endogenous to Pseudomonas putida KT2440 with an exogenous meta-cleavage pathway from P. putida mt-2 increases yields of pyruvate produced from aromatic molecules in engineered strains. Even more dramatically, replacing the endogenous protocatechuate ortho pathway with a meta-cleavage pathway from Sphingobium sp. SYK-6 results in a nearly five-fold increase in pyruvate production. We further demonstrate the aerobic conversion of pyruvate to l-lactate with a yield of 41.1 ± 2.6% (wt/wt). Overall, this study illustrates how aromatic degradation pathways can be tuned to optimize the yield of a desired product in biological lignin upgrading.
Assuntos
Ácido Láctico/biossíntese , Lignina/metabolismo , Engenharia Metabólica , Pseudomonas putida , Ácido Pirúvico/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismoRESUMO
The ß-ketoadipate pathway is a major pathway involved in the catabolism of the aromatic compounds in microbes. The recent progress in genome sequencing has led to a rapid accumulation of genes from the ß-ketoadipate pathway in the available genetic database, yet the functions of these genes remain uncharacterized. In this study, the protocatechuate branch of the ß-ketoadipate pathway of Rhodococcus jostii was reconstituted in vitro. Analysis of the reaction products of PcaHG, PcaB, and PcaL was achieved by high-performance liquid chromatography. These reaction products, ß-ketoadipate enol-lactone, 3-carboxy-cis,cis-muconate, γ-carboxymuconolactone, muconolactone, and ß-ketoadipate, were further characterized using LC-MS and nuclear magnetic resonance. In addition, the in vitro reaction of PcaL, a bidomain protein consisting of γ-carboxy-muconolactone decarboxylase and ß-ketoadipate enol-lactone hydrolase activities, was demonstrated for the first time. This work provides a basis for analyzing the catalytic properties of enzymes involved in the growing number of ß-ketoadipate pathways deposited in the genetic database.
Assuntos
Proteínas de Bactérias/metabolismo , Rhodococcus/metabolismo , Adipatos/análise , Adipatos/metabolismo , Proteínas de Bactérias/genética , Carboxiliases/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Catálise , Cromatografia Líquida de Alta Pressão , Lactonas/metabolismo , Espectroscopia de Ressonância Magnética , Redes e Vias Metabólicas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodococcus/genética , Ácido Sórbico/análogos & derivados , Ácido Sórbico/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Ácidos Tricarboxílicos/metabolismoRESUMO
As a kind of refractory organic pollutant, 4-fluorophenol (4-FP) can be degraded by only a few microorganisms with low efficiency because of the great electron-withdrawing ability of fluorine atoms. So it is necessary to artificially construct engineered strain to improve the degradation efficiency and meet the requirements of pollutant degradation. In this study, four genes (fpdA2, fpdB, fpdC, and fpdD) for 4-FP degradation from Arthrobacter sp. strain IF1 were optimized and synthesized and then reconstructed into Escherichia coli by a multi-monocistronic vector to obtain recombinant BL-fpd that could degrade 4-FP efficiently. Under optimized induction conditions (inducing the strain by 2 g/L L-arabinose and 1 mM IPTG at 37 â), BL-fpd could completely degrade 2 mM 4-FP, 4-chlorophenol, 4-bromophenol, and 4-nitrophenol into ß-ketoadipate, which could be further metabolized by the bacteria. FpdA2 showed the highest activity towards 4-bromophenol. The strain could completely degrade 1 mM 4-FP in industrial wastewater within 3 h. This study provided a promising strain for the degradation of 4-FP and some other 4-substituted phenols. The construction technologies of multi-monocistronic expression vector may also be used to construct other organic pollutants degrading bacteria.
RESUMO
Vanillin and vanillate are the major lignin-derived aromatic compounds produced through the alkaline oxidation of softwood lignin. Because the production of higher-value added chemicals from these compounds is essential for lignin valorization, the microbial production of ß-ketoadipate, a promising raw material for the synthesis of novel nylons, from lignin was considered. Pseudomonas putida KT2440 was engineered to convert vanillin and vanillate to ß-ketoadipate. By examining the culture conditions with an initial culture volume of 1 L, the engineered strain completely converted 25 g of vanillin and 25 g of vanillate and produced approximately 23 g of ß-ketoadipate from each of them with a yield of 93% or higher. Furthermore, this strain showed the ability to efficiently produce ß-ketoadipate from softwood lignin extracts in black liquor, a byproduct of pulp production. These results suggest that the production of ß-ketoadipate from industrial black liquor is highly feasible for substantial lignin valorization.
Assuntos
Lignina , Pseudomonas putida , AdipatosRESUMO
Fusarium head blight (FHB) is a major cereal crop disease, caused most frequently by the fungus Fusarium graminearum. We have previously demonstrated that F. graminearum can utilize SA as sole source of carbon to grow. In this current study, we further characterized selected four fungal SA-responsive genes that are predicted to encode salicylic acid (SA)-degrading enzymes and we used a gene replacement approach to characterize them further. These included two genes predicted to encode a salicylate 1-monooxygenase, FGSG_03657 and FGSG_09063, a catechol 1, 2-dioxygenase gene, FGSG_03667, and a 2, 3-dihydroxybenzoic acid decarboxylase gene, FGSG_09061. For each gene, three independent gene replacement strains were assayed for their ability to degrade salicylic acid in liquid culture. Salicylate 1-monooxygenase FGSG_03657 and catechol 1, 2-dioxygenase FGSG_03667 were shown to be essential for SA degradation, while a loss of 2, 3-dihydroxybenzoic acid decarboxylase FGSG_09061 caused only a partial reduction of SA degradation and a loss of salicylate 1-monooxygenase FGSG_09063 had no effect when compared to wild type culture. Salicylate 1-monooxygenase FGSG_03657 and catechol 1, 2-dioxygenase FGSG_03667 were identified as the first two key enzyme steps of SA degradation via catechol in the ß-ketoadipate pathway. Expression profiles for all four genes were also determined in liquid culture and in planta. Salicylate 1-monooxygenase FGSG_03657 and catechol 1, 2-dioxygenase FGSG_03667 were co-expressed and their expression was substrate dependent in liquid culture; however their expression was uncoupled in planta. Disruption of the gene for catechol 1, 2-dioxygenase FGSG_03667 was shown to have no effect on fungal virulence on wheat. Our results with 2, 3-dihydroxybenzoic acid decarboxylase FGSG_09061 raise the possibility of an alternate non-oxidative decarboxylation pathway for the conversion of SA to catechol via 2, 3-dihydrozybenzoic acid and for a connection between the oxidative and the non-oxidative decarboxylation pathways for SA conversion.
Assuntos
Anti-Infecciosos/metabolismo , Enzimas/metabolismo , Fusarium/metabolismo , Redes e Vias Metabólicas/genética , Ácido Salicílico/metabolismo , Biotransformação , Carbono/metabolismo , Enzimas/genética , Fusarium/crescimento & desenvolvimento , Deleção de Genes , Triticum/microbiologiaRESUMO
BACKGROUND: Biological routes for utilizing both carbohydrates and lignin are important to reach the ultimate goal of bioconversion of full carbon in biomass into biofuels and biochemicals. Recent biotechnology advances have shown promises toward facilitating biological transformation of lignin into lipids. Natural and engineered Rhodococcus strains (e.g., R. opacus PD630, R. jostii RHA1, and R. jostii RHA1 VanA-) have been demonstrated to utilize lignin for lipid production, and co-culture of them can promote lipid production from lignin. RESULTS: In this study, a co-fermentation module of natural and engineered Rhodococcus strains with significant improved lignin degradation and/or lipid biosynthesis capacities was established, which enabled simultaneous conversion of glucose, lignin, and its derivatives into lipids. Although Rhodococci sp. showed preference to glucose over lignin, nearly half of the lignin was quickly depolymerized to monomers by these strains for cell growth and lipid synthesis after glucose was nearly consumed up. Profiles of metabolites produced by Rhodococcus strains growing on different carbon sources (e.g., glucose, alkali lignin, and dilute acid flowthrough-pretreated poplar wood slurry) confirmed lignin conversion during co-fermentation, and indicated novel metabolic capacities and unexplored metabolic pathways in these organisms. Proteome profiles suggested that lignin depolymerization by Rhodococci sp. involved multiple peroxidases with accessory oxidases. Besides the ß-ketoadipate pathway, the phenylacetic acid (PAA) pathway was another potential route for the in vivo ring cleavage activity. In addition, deficiency of reducing power and cellular oxidative stress probably led to lower lipid production using lignin as the sole carbon source than that using glucose. CONCLUSIONS: This work demonstrated a potential strategy for efficient bioconversion of both lignin and glucose into lipids by co-culture of multiple natural and engineered Rhodococcus strains. In addition, the involvement of PAA pathway in lignin degradation can help to further improve lignin utilization, and the combinatory proteomics and bioinformatics strategies used in this study can also be applied into other systems to reveal the metabolic and regulatory pathways for balanced cellular metabolism and to select genetic targets for efficient conversion of both lignin and carbohydrates into biofuels.
RESUMO
Members of the genus Halotalea (family Halomonadaceae) are of high significance since they can tolerate the greatest glucose and maltose concentrations ever reported for known bacteria and are involved in the degradation of industrial effluents. Here, the characteristics and the permanent-draft genome sequence and annotation of Halotalea alkalilenta AW-7(T) are described. The microorganism was sequenced as a part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project at the DOE Joint Genome Institute, and it is the only strain within the genus Halotalea having its genome sequenced. The genome is 4,467,826 bp long and consists of 40 scaffolds with 64.62 % average GC content. A total of 4,104 genes were predicted, comprising of 4,028 protein-coding and 76 RNA genes. Most protein-coding genes (87.79 %) were assigned to a putative function. Halotalea alkalilenta AW-7(T) encodes the catechol and protocatechuate degradation to ß-ketoadipate via the ß-ketoadipate and protocatechuate ortho-cleavage degradation pathway, and it possesses the genetic ability to detoxify fluoroacetate, cyanate and acrylonitrile. An emended description of the genus Halotalea Ntougias et al. 2007 is also provided in order to describe the delayed fermentation ability of the type strain.
RESUMO
The protocatechuate branch of the ß-ketoadipate pathway is the most common pathway for degradation of monoaromatic compounds in the Roseobacter lineage. We analyzed 43 Roseobacter genomes in order to determine if they possessed all genetic elements for this pathway and if there were common patterns in gene organization. The eight genes of the pathway (pcaG, -H, -B, -C, -D, -I, -J, and -F), possible regulators, and genes encoding for proteins with related function (i.e. catabolism of 4-hydroxybenzoate, catechol, and meta-cleavage of protocatechuate) were predicted by sequence homology analysis. Most of the Roseobacters studied had putatively a complete protocatechuate branch of the ß-ketoadipate pathway while 11 of them would probably have an incomplete pathway. Thirty-one Roseobacters would be potentially able of transforming 4-hydroxybenzoate to protocatechuate, and 13 of them might transform catechol via ortho-cleavage, the starting reaction of the catechol branch of the ß-ketoadipate pathway. We observed variability in gene organization, with no clear relationship between gene order and Roseobacter taxonomy. Genes were usually organized in several gene clusters. One of the clusters (pcaRIJF) was not reported previously in Roseobacters. The presence of the putative regulator pcaR in these bacteria was also a novel finding. The conserved ORF (chp), encoding for a protein of family DUF849 whose functional role has been proven recently, was detected in 34 genomes. Sequence homology confirmed that proteins encoded by chp corresponded to putative BKACE G4 proteins, which are able to transform ß-ketoadipate. Therefore, most Roseobacters seemed to possess two different enzymes for transforming ß-ketoadipate. We also report two possible regulation mechanisms of gene pobA (encoding for the enzyme transforming 4-hydroxybenzoate to protocatechuate): via PcaQ, the regulator commonly found with pca genes, and via an independent regulator (PobR). The results of this study evidence the relevance of 4-hydroxybenzoate, protocatechuate and ß-ketoadipate degradation pathways in Roseobacters and provide a more complex view of possible regulation mechanisms.
Assuntos
Adipatos/metabolismo , Proteínas de Bactérias/metabolismo , Redes e Vias Metabólicas/genética , Parabenos/metabolismo , Roseobacter/genética , Adipatos/química , Proteínas de Bactérias/química , Sequência de Bases , Catecóis/metabolismo , Genômica/métodos , Dados de Sequência Molecular , Estrutura Molecular , Fases de Leitura Aberta/genética , Roseobacter/metabolismo , Análise de Sequência de DNA , Homologia de Sequência , Especificidade da EspécieRESUMO
A mixture of xylenols (2,6-, 3,4-, 3,5-) was subjected to laboratory-scale constructed wetland treatment using helophytes. Conversion efficiencies under aerobic conditions ranged from 89% to 94%; the corresponding numbers under anaerobic conditions were lower. The studies were focused on the identification of stable organic intermediates. Identification was performed by a combination of GC/MS analysis and pre-chromatographic derivatization of the lyophilizates. In addition to common intermediates including citraconate, succinate and dimethyl benzenediols, an array of α- and ß-ketoadipic acid carboxylates could be identified. The ketoadipic acid carboxylates have not been known to be formed in bioremediation of phenols including xylenols so far. Mechanisms for the formation of ketoadipic acid carboxylates are proposed. Chemotaxonomic considerations using diagnostic fatty acids provided mounting evidence that organic matter originating from plants prevailed over bacterial organic matter. Biomarkers indicated a virtual absence of fungi and algae.
Assuntos
Áreas Alagadas , Xilenos/química , Biodegradação Ambiental , Ácidos Carboxílicos/análise , Cromatografia Gasosa-Espectrometria de Massas , Isomerismo , Laboratórios , Oxirredução , Fenóis/análise , Plantas/metabolismo , Xilenos/metabolismoRESUMO
We have reported a transcription profile of an adapted Corynebacterium glutamicum that showed enhanced oxidative stress resistance. To construct an artificial oxidative stress-resistant strain, gene clusters in the ß-ketoadipate pathway, which were up-regulated in the adapted strain, were artificially expressed in the wild-type C. glutamicum. The wild-type strain was unable to grow under 2 mM H2O2 containing minimal medium, while the strains expressing pca gene clusters restored growth under the same medium, and the pcaHGBC expression showed the most significant effect among the gene clusters. The expressions of pca gene clusters also enabled the wild-type to increase its resistance against oxidative stressors, such as diamide and cumene hydroperoxide, as well as H2O2. The oxidative stress tolerance of the strain was correlated to the reactive oxygen species (ROS)-scavenging activity of the cell extract. The reason for the enhanced oxidative stress-resistance of C. glutamicum and its applications on the synthetic strain development are discussed.