RESUMO
The proteins that coordinate the complex transcriptional networks of aging have not been completely documented. Protein 14-3-3zeta is an adaptor protein that coordinates signaling and transcription factor networks, but its function in aging is not fully understood. Here, we showed that the protein expression of 14-3-3zeta gradually increased during aging. High levels of 14-3-3zeta led to shortened lifespan and imbalance of intestinal immune homeostasis in Drosophila, but the decrease in 14-3-3zeta protein levels by RNAi was able to significantly promote the longevity and intestinal immune homeostasis of fruit flies. Importantly, we demonstrate that adult-onset administration of TIC10, a compound that reduces the aging-related AKT and extracellular signal-regulated kinase (ERK) signaling pathways, rescues the shortened lifespan of 14-3-3zeta-overexpressing flies. This finding suggests that 14-3-3zeta plays a critical role in regulating the aging process. Our study elucidates the role of 14-3-3zeta in natural aging and provides the rationale for subsequent 14-3-3zeta-based antiaging research.
Assuntos
Proteínas 14-3-3 , Envelhecimento , Proteínas de Drosophila , Drosophila melanogaster , Intestinos , Animais , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Envelhecimento/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/imunologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Longevidade , Transdução de Sinais , Intestinos/imunologiaRESUMO
Severe corneal injury can lead to blindness even after prompt treatment. 14-3-3zeta, a member of an adaptor protein family, contributes to tissue repair by enhancing cellular viability and inhibiting fibrosis and inflammation in renal disease or arthritis. However, its role in corneal regeneration is less studied. In this study, filter disc of 2-mm diameter soaked in sodium hydroxide with a concentration of 0.5 N was placed at the center of the cornea for 30 s to establish a mouse model of corneal alkali injury. We found that 14-3-3zeta, which is mainly expressed in the epithelial layer, was upregulated following injury. Overexpression of 14-3-3zeta in ocular tissues via adeno-associated virus-mediated subconjunctival delivery promoted corneal wound healing, showing improved corneal structure and transparency. In vitro studies on human corneal epithelial cells showed that 14-3-3zeta was critical for cell proliferation and migration. mRNA-sequencing in conjunction with KEGG analysis and validation experiments revealed that 14-3-3zeta regulated the mRNA levels of ITGB1, PIK3R1, FGF5, PRKAA1 and the phosphorylation level of Akt, suggesting the involvement of the PI3K-Akt pathway in 14-3-3zeta-mediated tissue repair. 14-3-3zeta is a potential novel therapeutic candidate for treating severe corneal injury.
Assuntos
Proteínas 14-3-3 , Queimaduras Químicas , Lesões da Córnea , Cicatrização , Animais , Humanos , Masculino , Camundongos , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/biossíntese , Western Blotting , Queimaduras Químicas/metabolismo , Queimaduras Químicas/patologia , Queimaduras Químicas/tratamento farmacológico , Movimento Celular , Proliferação de Células , Células Cultivadas , Lesões da Córnea/metabolismo , Lesões da Córnea/patologia , Lesões da Córnea/genética , Modelos Animais de Doenças , Epitélio Corneano/metabolismo , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/lesões , Queimaduras Oculares/induzido quimicamente , Regulação da Expressão Gênica , Homeostase , Camundongos Endogâmicos C57BL , Hidróxido de Sódio , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologiaRESUMO
Inflammatory arthritis (IA) is a common disease that affects millions of individuals worldwide. Proinflammatory events during IA pathogenesis are well studied; however, loss of protective immunity remains underexplored. Earlier, we reported that 14-3-3zeta (ζ) has a role in T-cell polarization and interleukin (IL)-17A signal transduction. Here, we demonstrate that 14-3-3ζ knockout (KO) rats develop early-onset severe arthritis in two independent models of IA, pristane-induced arthritis and collagen-induced arthritis. Arthritic 14-3-3ζ KO animals showed an increase in bone loss and immune cell infiltration in synovial joints. Induction of arthritis coincided with the loss of anti-14-3-3ζ antibodies; however, rescue experiments to supplement the 14-3-3ζ antibody by passive immunization did not suppress arthritis. Instead, 14-3-3ζ immunization during the presymptomatic phase resulted in significant suppression of arthritis in both wild-type and 14-3-3ζ KO animals. Mechanistically, 14-3-3ζ KO rats exhibited elevated inflammatory gene signatures at the messenger RNA and protein levels, particularly for IL-1ß. Furthermore, the immunization with recombinant 14-3-3ζ protein suppressed IL-1ß levels, significantly increased anti-14-3-3ζ antibody levels and collagen production, and preserved bone quality. The 14-3-3ζ protein increased collagen expression in primary rat mesenchymal cells. Together, our findings indicate that 14-3-3ζ causes immune suppression and extracellular remodeling, which lead to a previously unrecognized IA-suppressive function.
Assuntos
Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/farmacologia , Artrite/induzido quimicamente , Inflamação/tratamento farmacológico , Proteínas 14-3-3/genética , Proteínas 14-3-3/imunologia , Animais , Anticorpos , Artrite/genética , Artrite/metabolismo , Densidade Óssea , Doenças Ósseas/metabolismo , Doenças Ósseas/prevenção & controle , Colágeno/metabolismo , Colágeno/toxicidade , Feminino , Adjuvante de Freund/farmacologia , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Imunização Passiva , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Terpenos/toxicidadeRESUMO
Cystic echinococcosis (CE) is a zoonotic parasitic disease caused by the metacestode larva of Echinococcus granulosus. In this study, two-dimensional gel electrophoresis (2-DE) coupled with immunoblot analysis revealed that E. granulosus severin and 14-3-3zeta proteins (named EgSeverin and Eg14-3-3zeta, respectively) might be two potential biomarkers for serological diagnosis of echinococcosis. The recombinant EgSeverin (rEgSeverin, 45 kDa) and Eg14-3-3zeta (rEg14-3-3zeta, 35 kDa) were administered subcutaneously to BALB/c mice to obtain polyclonal antibodies for immunofluorescence analyses (IFAs). And IFAs showed that both proteins were located on the surface of protoscoleces (PSCs). Western blotting showed that both proteins could react with sera from E. granulosus-infected sheep, dog, and mice. Indirect ELISAs (rEgSeverin- and rEg14-3-3zeta-iELISA) were developed, respectively, with sensitivities and specificities ranging from 83.33% to 100% and a coefficient of variation (CV %) of less than 10%. The rEgSeverin-iELISA showed cross-reaction with both E. granulosus and E. multilocularis, while the rEg14-3-3zeta-iELISA showed no cross-reaction with other sera except for the E. granulosus-infected ones. The field sheep sera from Xinjiang and Qinghai were analyzed using rEgSeverin-iELISA, rEg14-3-3zeta-iELISA, and a commercial kit respectively, and no significant differences were found among the three methods (p > 0.05). However, the CE positive rates in sheep sera from Qinghai were significantly higher than those from Xinjiang (p < 0.01). Overall, the results suggest that EgSeverin and Eg14-3-3zeta could be promising diagnostic antigens for E. granulosus infection.
Assuntos
Equinococose , Echinococcus granulosus , Cães , Animais , Ovinos , Camundongos , Echinococcus granulosus/genética , Proteínas 14-3-3/metabolismo , Equinococose/diagnóstico , Equinococose/veterinária , Western Blotting , Ensaio de Imunoadsorção Enzimática/métodos , Zoonoses , Anticorpos Anti-HelmínticosRESUMO
Dysregulation of PR (PRDI-BF1 and RIZ) domain protein 5 (PRDM5) expression has been shown to be associated with the progression of many malignancies. Nevertheless, the role and underlying mechanism of PRDM5 in oesophageal squamous cell carcinoma (ESCC) remain elusive. qRT-PCR was performed to analyze PRDM5 mRNA expression, and western blot was used to determine protein expression of PRDM5, MMP-2, MMP-9, 14-3-3zeta, pan-Akt and phosphorylated Akt expression. CCK-8 staining was employed to evaluate cell proliferation, while wound scratch assay and Transwell assay were carried out to detect cell migration. A tumour xenograft model of ESCC was also established to validate the effect of PRDM5. PRDM5 expression was downregulated in ESCC tissues and positively correlated with the overall survival of ESCC patients. Silencing PRDM5 expression promoted cell proliferation in ESCC cells, while overexpressing PRDM5 inhibited cell proliferation. Moreover, the migratory abilities of ESCC cells were promoted by PRDM5 knockdown but were attenuated by PRDM5 overexpression. Importantly, 14-3-3zeta expression, along with the phosphorylation of Akt, was suppressed by PRDM5 in ESCC cells. In the established tumour xenograft model, PRDM5 regulated ESCC tumour growth as well as the expression of 14-3-3zeta and phosphorylation of Akt protein. In conclusion, PRDM5 suppresses ESCC cell proliferation and migration and negatively regulates 14-3-3zeta/Akt signalling pathway in vitro and in vivo.
Assuntos
Proteínas 14-3-3/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Esofágicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/metabolismo , Proteínas 14-3-3/genética , Animais , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Fatores de Transcrição/genéticaRESUMO
Strong 14-3-3 zeta protein expression plays an important role in tumorigenesis, including in the maintenance of cell growth, resistance increase, and the prevention of apoptosis. In this study, we focus on two targets: (1) the expression of 14-3-3 zeta in the different grades of human astrocytoma (II-IV), (2) suppression of 14-3-3 zeta protein expression in glioblastoma derived astrocytes by 14-3-3 zeta shRNA lentiviral particles. The tissues of human astrocytoma were provided from 30 patients (ten of each grade of astrocytoma). Control tissues were obtained from the peritumoral brain zone of those patients with glioblastoma. The protein and mRNA expression levels of each astrocytoma grade were assessed via western blotting and RT-PCR, respectively. Results indicated that 14-3-3 zeta was significantly expressed in glioblastoma multiforme (grade IV) and 14-3-3 zeta expression levels enhanced according to the increase of astrocytoma malignancy. In the cellular study for knock down of the 14-3-3 zeta protein, surgical biopsy of glioblastoma was used to isolate primary astrocyte. Astrocytes were transduced with 14-3-3 zeta shRNA or non-targeted shRNA lentiviral particles. Furthermore, reduction of the 14-3-3 zeta protein expression in the astrocytes evaluated through qRT-PCR and western blot after transduction of 14-3-3 zeta shRNA lentiviral particles. Moreover, apoptosis properties, including DNA fragmentation and ratio increase of Bax/Bcl-2 were observed in astrocytes following reduction of 14-3-3 zeta protein expression. Further observation indicated that the mitochondrial pathway through release of cytochorome c and caspase-3 activity was involved in the apoptosis induction. Hence, this study demonstrates a key role of the 14-3-3 zeta protein in tumorigenesis but also indicates that 14-3-3 zeta can be considered as a target for the astrocytoma treatment specially glioblastoma.
Assuntos
Proteínas 14-3-3/genética , Apoptose/genética , Neoplasias Encefálicas/patologia , Regulação para Baixo/genética , Glioblastoma/patologia , Proteínas 14-3-3/antagonistas & inibidores , Proteínas 14-3-3/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Astrocitoma/genética , Astrocitoma/patologia , Encéfalo/patologia , Neoplasias Encefálicas/genética , Carcinogênese/genética , Feminino , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Células Tumorais CultivadasRESUMO
Intravesical Bacillus Calmette-Guerin (BCG) is the best treatment modality for progression of non-muscle invasive bladder cancer. We aimed to monitor changes at the proteome level to identify putative protein biomarkers associated with the response of urothelial precancerous lesions to intravesical BCG treatment. The rats were divided into three groups (n = 10/group): control, non-treated, and BCG-treated groups. The non-treated and BCG-treated groups received N-methyl-N-nitrosourea intravesically. BCG Tice-strain was instilled into bladder in BCG-treated group. At the endpoint of experiment, all surviving rat bladders were collected and equally divided into two portions vertically from dome to neck. Half of each bladder was assessed immunohistopathologically and the other half was used for 2D-based comparative proteomic analysis. Differentially expressed proteins were validated by Western blot analysis. Precancerous lesions of bladder cancer were more common in non-treated group (77.8%) than in BCG-treated group (50%) and the control group (0%). Greater than twofold changes occurred in the expression of a number of proteins. Among them, Rab-GDIß, aldehyde dehydrogenase 2 (ALDH2) and 14-3-3 zeta/delta were important since they were previously reported to be associated with cancer and their expression levels were found to be lower in BCG-treated group in comparison to the non-treated group. ALDH2 and 14-3-3 zeta/delta were also found to be highly expressed in the non-treated group compared to the control group. The down-regulation of these proteins and Rab-GDIß was achieved with BCG; this result indicates that they may be used as putative biomarkers for monitoring changes in bladder carcinogenesis in response to BCG immunotherapy.
Assuntos
Vacina BCG/imunologia , Vacinas Anticâncer/imunologia , Imunoterapia/métodos , Neoplasias Urológicas/terapia , Urotélio/metabolismo , Administração Intravesical , Animais , Modelos Animais de Doenças , Feminino , Inibidores de Dissociação do Nucleotídeo Guanina/genética , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Humanos , Lesões Pré-Cancerosas , Proteoma , Ratos , Ratos Wistar , Neoplasias Urológicas/imunologia , Urotélio/patologiaRESUMO
Advancements in genomics, proteomics, and bioinformatics have improved our understanding of gene/protein networks involved in intra- and intercellular communication and tumor-host interactions. Using proteomics integrated with bioinformatics, previously we reported overexpression of 14-3-3ζ in premalignant oral lesions and oral squamous cell carcinoma tissues in comparison with normal oral epithelium. 14-3-3ζ emerged as a novel molecular target for therapeutics and a potential prognostic marker in oral squamous cell carcinoma patients. However, the role of 14-3-3ζ in development and progression of oral cancer is not known yet. This study aimed to identify the 14-3-3ζ associated protein networks in oral cancer cell lines using IP-MS/MS and bioinformatics. A total of 287 binding partners of 14-3-3ζ were identified in metastatic (MDA1986) and nonmetastatic (SCC4) oral cancer cell lines including other 14-3-3 isoforms (2%), proteins involved in apoptosis (2%), cytoskeleton (9%), metabolism (16%), and maintenance of redox potential (2%). Our bioinformatics analysis revealed involvement of 14-3-3ζ in protein networks regulating cell cycle, proliferation, apoptosis, cellular trafficking, and endocytosis in oral cancer. In conclusion, our data revealed several novel protein interaction networks involving 14-3-3ζ in oral cancer progression and metastasis.
Assuntos
Proteínas 14-3-3/metabolismo , Mapas de Interação de Proteínas/fisiologia , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Proteínas 14-3-3/análise , Proteínas 14-3-3/química , Linhagem Celular Tumoral , Humanos , Ligação Proteica , Proteoma/química , Transdução de SinaisRESUMO
14-3-3 proteins regulate numerous cellular processes through interaction with a variety of proteins, and have been identified as HNF1α binding partner by mass spectrometry analysis in our previous study. In the present study, the interaction between 14-3-3ζ and HNF1α has been further validated by in vivo and in vitro assays. Moreover, we have found that overexpression of 14-3-3ζ potentiated the transcriptional activity of HNF1α in cultured cells, and silencing of 14-3-3ζ by RNA interference in HepG2 cells specifically affected the HNF1α-dependent gene expression. Furthermore, we have demonstrated that 14-3-3ζ is recruited to endogenous HNF1α responsive promoters and enhances HNF1α binding to its cognate DNA sequences. In addition, we have also provided evidence that the association between HNF1α and 14-3-3ζ is phosphorylation-dependent. Taken together, these results suggest that 14-3-3ζ may be an endogenous physiologic regulator of HNF1α.
Assuntos
Proteínas 14-3-3/metabolismo , DNA/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Ativação Transcricional , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Humanos , Fosforilação , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
14-3-3 is a family of conserved proteins that consist of seven isoforms which are highly expressed in the brain, and 14-3-3 zeta(ζ) is one of the isoforms encoded by the YWHAZ gene. Previous studies demonstrated that 14-3-3ζ is deposited in the neurofibrillary tangles of Alzheimer's disease (AD) brains, and that 14-3-3ζ interacts with tau from the purified neurofibrillary tangles of AD brain extract. The present study examined the cerebrospinal fluid (CSF) 14-3-3ζ levels of 719 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI), including cognitively normal (CN) participants, patients with mild cognitive impairment (MCI) and patients with AD dementia, and aimed to identify whether CSF 14-3-3ζ is associated with tau pathology. CSF 14-3-3ζ levels were increased in AD, and particularly elevated among tau pathology positive individuals. CSF 14-3-3ζ levels were associated with CSF phosphorylated tau 181 (p-tau) (r = 0.741, P < 0.001) and plasma p-tau (r = 0.293, P < 0.001), which are fluid biomarkers of tau pathology, and could predict tau pathology positive status with high accuracy (area under the receiver operating characteristic curve [AUC], 0.891). CSF 14-3-3ζ levels were also correlated to synaptic biomarker CSF GAP-43 (r = 0.609, P < 0.001) and neuroinflammatory biomarker CSF sTREM-2 (r = 0.507, P < 0.001). High CSF 14-3-3ζ levels at baseline were associated with progressive decline of cognitive function and neuroimaging findings during follow up. In conclusion, this study suggests that CSF 14-3-3ζ is a potential biomarker of AD that may be useful in clinical practice.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Proteínas 14-3-3 , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Isoformas de Proteínas , Proteínas tau/líquido cefalorraquidianoRESUMO
The 14-3-3 proteins are known for their functions related to the cell cycle and play a prominent role in cancer-related diseases. Recent studies show that 14-3-3 proteins are also regulators of immune responses and are involved in the pathogenesis of autoimmune and infectious diseases. This focused review highlights the significant and recent studies on how 14-3-3 proteins influence innate and adaptive immune responses; specifically, their roles as immunogens and cytokine signaling regulators are discussed. These revelations have added numerous questions to the pre-existing list of challenges, including understanding the 14-3-3 proteins' mechanism of immunogenicity to dissecting the isoform-specific immune regulations.
Assuntos
Proteínas 14-3-3/fisiologia , Imunomodulação , Proteínas 14-3-3/química , Imunidade Adaptativa , Animais , Antígenos/imunologia , Citocinas/metabolismo , Humanos , Imunidade Inata , Transdução de Sinais , Relação Estrutura-AtividadeRESUMO
Hepatocellular carcinoma (HCC) is a common malignancy worldwide. Alpha-fetoprotein (AFP) is still the only serum biomarker widely used in clinical settings. However, approximately 40% of HCC patients exhibit normal AFP levels, including very early HCC and AFP-negative HCC; for these patients, serum AFP is not applicable as a biomarker of early detection. Thus, there is an urgent need to identify novel biomarkers for patients for whom disease cannot be diagnosed early. In this study, we screened and identified novel proteins in AFP-negative HCC and evaluated the feasibility of using autoantibodies to those protein to predict hepatocarcinogenesis. First, we screened and identified differentially expressed proteins between AFP-negative HCC tissue and adjacent non-tumor liver tissue using SWATH-MS proteome technology. In total, 2,506 proteins were identified with a global false discovery rate of 1%, of which 592 proteins were expressed differentially with 175 upregulated and 417 downregulated (adjusted p-value <0.05, fold-change FC ≥1.5 or ≤0.67) between the tumor and matched benign samples, including 14-3-3 zeta protein. For further serological verification, autoantibodies against 14-3-3 zeta in serum were evaluated using enzyme-linked immunosorbent, Western blotting, and indirect immunofluorescence assays. Five serial serum samples from one patient with AFP-negative HCC showed anti-14-3-3 zeta autoantibody in sera 9 months before the diagnosis of HCC, which gradually increased with an increase in the size of the nodule. Based on these findings, we detected the prevalence of serum anti-14-3-3 zeta autoantibody in liver cirrhosis (LC) patients, which is commonly considered a premalignant liver disease of HCC. We found that the prevalence of autoantibodies against 14-3-3 zeta protein was 16.1% (15/93) in LC patient sera, which was significantly higher than that in patients with chronic hepatitis (0/75, p = 0.000) and normal human sera (1/60, 1.7%, p = 0.01). Therefore, we suggest that anti-14-3-3 zeta autoantibody might be a biomarker for predicting hepatocarcinogenesis. Further follow-up and research of patients with positive autoantibodies will be continued to confirm the relationship between anti-14-3-3 zeta autoantibody and hepatocarcinogenesis.
RESUMO
Aortitis can be the manifestation of an underlying infectious or noninfectious disease process. An autoimmune cause is suggested in a large proportion of noninfectious causes. Similar to other autoimmune diseases, the pathophysiology of aortitis has been investigated in detail, but the etiology remains unknown. Most cases of aortitis often go undetected for a long time and are often identified at late stages of the disease. Recent advances in imaging techniques have significantly improved the diagnosis of aortitis. However, significant challenges associated with the imaging techniques limit their use. Several routine inflammation-based markers, such as erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and inflammatory cytokines, are nonspecific and, therefore, have limited use in the diagnosis of aortitis. The search for more specific serum biomarkers, which can facilitate detection and progression is under progress. Several autoantibodies have been identified, but assigning their role in the pathogenesis as well as their specificity remains a challenge. The current review addresses some of these issues in detail. KEY MESSAGES: ⢠Noninfectious aortitis is an autoimmune disease. ⢠Several biomarkers, including cytokines and autoantibodies, are increased in aortitis. ⢠Imaging techniques, commonly used to detect aortitis, are associated with the high cost and technical challenges. ⢠There is a need to develop low-cost biomarker-based detection tools. ⢠The knowledge of biomarkers in aortitis detection is discussed.
Assuntos
Aortite/sangue , Aortite/diagnóstico , Doenças Autoimunes/sangue , Doenças Autoimunes/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Aortite/terapia , Autoanticorpos/sangue , Biomarcadores/sangue , Sedimentação Sanguínea , Proteína C-Reativa/análise , Citocinas/sangue , Feminino , Humanos , Terapia de Imunossupressão/métodos , Inflamação/sangue , Masculino , Pessoa de Meia-IdadeRESUMO
PURPOSE: Autoantibody to 14-3-3 zeta was identified in gastric cancer (GC) by serological proteome analysis (SERPA) in our previous study. We comprehensively evaluated its ability to detect GC, determined its association with clinical characteristics, and explored its temporal change in GC patients before and after gastrectomy resection in this study. METHODS: Anti-14-3-3 zeta antibody was examined by immunoassay in sera from 465 GC patients and 465 normal individuals, and also in 69 serial sera from 26 GC patients before and after resection. RESULTS: The frequency of anti-14-3-3 zeta were significantly higher in GC group than in control group, with AUC of 0.627. The appearance of anti-14-3-3 zeta showed no difference in different tumor stage, tumor size, tumor differentiation, and lymphatic metastasis, but was higher in GC patients with family tumor history than without family tumor history. When anti-14-3-3 zeta was combined with clinical markers (CEA, CA199 and CA724), the sensitivity increased to 52.7%. In the follow-up analysis, the titer of anti-14-3-3 zeta was higher in post-resection sera than pre-resection sera, and no difference was observed in CEA, CA199 and CA724. Anti-14-3-3 zeta showed an increase from negative status to positive status in six patients after resection, while other three clinical markers presented different change in GC patients after resection. CONCLUSIONS: Autoantibody against 14-3-3 zeta could be a potential diagnostic biomarker and improve the sensitivity of CEA, CA199 and CA724 in diagnosis of GC. Further largescale studies will be needed to validate its performance in GC patients after resection.
Assuntos
Proteínas 14-3-3/imunologia , Autoanticorpos/imunologia , Autoantígenos/imunologia , Biomarcadores Tumorais , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo , Autoanticorpos/sangue , Autoantígenos/sangue , Antígeno CA-19-9 , Antígeno Carcinoembrionário , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Curva ROC , Reprodutibilidade dos Testes , Neoplasias Gástricas/sangue , Neoplasias Gástricas/diagnósticoRESUMO
OBJECTIVES: Circular RNAs (circRNAs) exist extensively in the eukaryotic genome. The study aimed to identify the role of hsa_circ_0008365 (Circ-SERPINE2) in gastric carcinoma (GC) cells and its downstream mechanisms. MATERIALS AND METHODS: Gene Expression Omnibus (GEO) database was applied to screen differentially expressed circRNAs. CircInteractome, TargetScan and miRecords websites were used to predict target relationships. qRT-PCR and RNase R treatment were utilised to detect molecule expression and confirm the existence of circ-SERPINE2. RNA pull-down assay and dual-luciferase reporter assay were performed for interaction between circRNA and miRNA or mRNA. EdU assay, colony formation assay, and flow cytometry for apoptosis and cell cycle detections were utilised to assess cell function. Western blot and immunohistochemistry (IHC) assays were applied for detection of proteins in tissues or cells. RESULTS: Circ-SERPINE2 and YWHAZ were upregulated, and miR-375 was downregulated in GC tissues and cells. Circ-SERPINE2 and YWHAZ targetedly bound to miR-375. Circ-SERPINE2 promoted cell proliferation and cell cycle progress and inhibited cell apoptosis by sponging miR-375 and regulating YWHAZ expression in vitro. Circ-SERPINE2 repressed solid tumour growth through enhancing miR-375 expression and reducing YWHAZ expression in vivo. CONCLUSIONS: Circ-SERPINE2 is a novel proliferative promoter through the regulation of miR-375/YWHAZ. Circ-SERPINE2/miR-375/YWHAZ axis might provide a novel therapeutic target of GC.
Assuntos
Proteínas 14-3-3/genética , MicroRNAs/genética , Serpina E2/genética , Neoplasias Gástricas/genética , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , RNA , RNA Circular , Neoplasias Gástricas/patologia , Regulação para Cima/genéticaRESUMO
OBJECTIVES: Despite of the aberrant expression of 14-3-3ζ in head and neck squamous cell carcinoma (HNSCC), little is known about the role of 14-3-3ζ in the regulation of senescence in HNSCC. This study was performed to investigate whether 14-3-3ζ is implicated in senescence evasion of Hep-2 laryngeal cancer cells. METHODS: The expression of 14-3-3ζ was suppressed using RNA interference strategy. Senescence induction was determined by senescence-associated ß-galactosidase staining and the numbers of promyelocytic leukaemia nuclear body. Real-time PCR, western blotting and immunohistochemistry were applied for the expression of corresponding proteins. Xenograft experiment was performed to show in vivo effect of 14-3-3ζ silencing on tumour growth. RESULTS: 14-3-3ζ silencing significantly induced senescence phenotypes via 27 accumulations. Subsequently, we demonstrated that p27 accumulation is linked to inactivation of SCFSkp2 complex activity, probably due to the deneddylation of cullin-1 (Cul-1) as follows. (a) Neddylated Cul-1 is decreased by 14-3-3ζ silencing. (b) Blocking neddylation using MLN4924 reproduces senescence phenotypes. (c) Knockdown of CSN5, which functions as a deneddylase, was shown to restore the senescence phenotypes induced by 14-3-3ζ depletion. Finally, we demonstrated that 14-3-3ζ depletion effectively hindered the proliferation of Hep-2 cells implanted into nude mice. CONCLUSION: 14-3-3ζ negatively regulates senescence in Hep-2 cells, suggesting that 14-3-3ζ targeting may serve to suppress the expansion of laryngeal cancer via induction of senescence through the Cul-1/SCFSkp2 /p27 axis.
Assuntos
Proteínas 14-3-3/metabolismo , Proteínas Culina/metabolismo , Proteínas F-Box/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas 14-3-3/antagonistas & inibidores , Proteínas 14-3-3/genética , Animais , Complexo do Signalossomo COP9/antagonistas & inibidores , Complexo do Signalossomo COP9/genética , Complexo do Signalossomo COP9/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Senescência Celular , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/patologia , Masculino , Camundongos , Camundongos Nus , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Quinases Associadas a Fase S/genéticaRESUMO
AIM: To determine the prevalence and diagnostic value of autoantibodies in α-fetoprotein (AFP)-negative hepatocellular carcinoma (HCC). METHODS: Fifty-six serum samples from AFP-negative HCC cases, 86 from AFP-positive HCC cases, 168 from chronic liver disease cases, and 59 from normal human controls were included in this study. Autoantibodies to nucleophosmin (NPM)1, 14-3-3zeta and mouse double minute 2 homolog (MDM2) proteins in AFP-negative HCC serum were evaluated by enzyme-linked immunosorbent assay. Partially positive sera were further evaluated by western blotting. Immunohistochemistry was used to detect the expression of three tumor-associated antigens (TAAs) in AFP-negative HCC and normal control tissues. RESULTS: The frequency of autoantibodies to the three TAAs in AFP-negative HCC sera was 21.4%, 19.6% and 19.6%, which was significantly higher than in the chronic liver disease cases and normal human controls (P < 0.01) as well as AFP-positive HCC cases. The sensitivity of the three autoantibodies for diagnosis of AFP-negative HCC ranged from 19.6% to 21.4%, and the specificity was approximately 95%. When the three autoantibodies were combined, the sensitivity reached 30.4% and the specificity reached 91.6%. CONCLUSION: Autoantibodies to NPM1, 14-3-3zeta and MDM2 may be useful biomarkers for immunodiagnosis of AFP-negative HCC.
Assuntos
Autoanticorpos/sangue , Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/diagnóstico , alfa-Fetoproteínas/metabolismo , Proteínas 14-3-3/imunologia , Proteínas 14-3-3/metabolismo , Idoso , Autoanticorpos/imunologia , Carcinoma Hepatocelular/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica , Testes Imunológicos , Hepatopatias/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteínas Proto-Oncogênicas c-mdm2/imunologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Recombinantes/metabolismo , Estudos Retrospectivos , alfa-Fetoproteínas/imunologiaRESUMO
PURPOSE: 14-3-3 zeta protein plays a potential protective role in neurodegenerative disease. Given that glaucoma and neurodegenerative diseases share a similar pathogenesis, it is possible that 14-3-3 zeta may have a similar protective effect in the glaucomatous process. In the present study, we measured the expression of 14-3-3 zeta in vivo (mouse eyes) and in vitro in a transformed human trabecular meshwork (HTM) cell line, TM-1, and assessed the possible roles of this protein in dexamethasone (DEX)-treated eyes and HTM cells. METHODS: Mouse eyes were randomly treated with 0.1% dexamethasone (DEX) eye drops or phosphate-buffered solution (PBS) for 28 days. The expression and distribution of 14-3-3 zeta protein in mouse eyes were examined using immunofluorescence. TM-1 cells were treated with DEX (10-6 or 10-7 M) or PBS for 1, 4, or 7 days, and the mRNA and protein expression of 14-3-3 zeta were detected by real-time RT-PCR and Western blotting. RESULTS: 14-3-3 zeta protein was highly expressed in the mouse cornea, trabecular meshwork (TM), and ciliary body. Intraocular pressure (IOP) was significantly elevated, whereas the 14-3-3 zeta expression was significantly decreased in mouse TM after 0.1% DEX treatment for 28 days. In vitro, treatment with 10-7 M DEX mildly increased 14-3-3 zeta mRNA and protein expression (p > 0.05), whereas 10-6 M DEX significantly decreased expression of 14-3-3 zeta mRNA and protein (p < 0.05) compared to the control (Ctrl) group at the seventh day. CONCLUSIONS: DEX can increase IOP in mouse eyes and concurrently downregulate 14-3-3 zeta protein expression in mouse TM. The effects of DEX on 14-3-3 zeta expression in vitro were both dose- and time-related. Our results suggest that alterations in 14-3-3 zeta protein may be implicated in DEX-induced pathological elevated IOP.
Assuntos
Proteínas 14-3-3/genética , Dexametasona/toxicidade , Regulação da Expressão Gênica , Glaucoma/genética , Pressão Intraocular/efeitos dos fármacos , RNA/genética , Malha Trabecular/metabolismo , Proteínas 14-3-3/biossíntese , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Glaucoma/induzido quimicamente , Glaucoma/metabolismo , Glucocorticoides/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase em Tempo Real , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/patologiaRESUMO
BACKGROUND AND OBJECTIVE: Our previous studies reported that miR-451 could protect against erythroid oxidant stress target gene-Ywhaz (14-3-3zeta) via inhibiting FoxO3 in the erythropoiesis. This study aimed to investigate the potential mechanism underlying the regulatory effect of miR-451 on human colorectal cancer (CRC) cells. METHODS: In this study, expressions of miR-451 and Ywhaz in CRC tissues and adjacent normal tissues were detected by quantitative real-time PCR (qRT-PCR) and immunohistochemistry respectively. Human colon cancer cell lines were transfected with miR-451-MSCV-PIG retroviral vector to restore miR-451 expression. Ywhaz-3'UTR luciferase reporter assay confirmed Ywhaz as a direct target gene of miR-451. HCT116 cells and H29 cells were transfected with -shRNA-Ywhaz (pSGU6-Ywahz-shRNA-GFP) and the protein level of FoxO3 in the nucleus and cytoplasm was detected via Western blot assay. The anti-tumor effects of miR-451 were further verified in nude mice. RESULTS: miR-451 was significantly down-regulated in human colon cancer tissues and cell lines (HCT116 and HT29), and inversely correlated with Dukes stage of colon cancer. Ywhaz was a candidate target gene of miR-451 and able to stimulate tumor growth via binding to FoxO3, inhibiting the FoxO3 nuclear accumulation. CONCLUSION: miR-451 may inhibit the colon cancer growth in vitro and in vivo, likely through directly targeting Ywhaz and indirectly regulating the nuclear accumulation of FoxO3.
RESUMO
14-3-3 proteins have been shown to regulate the actin cytoskeleton remodeling, cell adhesion and migration. In this study, we identified ezrin, a cross-linker between plasma membrane and actin cytoskeleton, as a novel 14-3-3ζ interacting partner. The direct interaction between 14-3-3ζ and ezrin was validated in the cells and by in vitro assays. We showed that the 14-3-3ζ binding region in ezrin was located within the N-terminal and central α-helical domains and that the αG-to-αI helices of 14-3-3ζ are responsible for the binding to ezrin. Functional analyses revealed that the regulation of cell migration and membrane ruffling by 14-3-3ζ is ezrin dependent, for which the integrity of ezrin protein was required. Conversely, the knockdown of 14-3-3ζ abrogates also the stimulatory effect of ezrin on cell migration and membrane ruffling. Moreover, we found that the phosphorylation of Thr567 in ezrin facilitates the 14-3-3ζ-ezrin interaction and the formation of membrane ruffles. Taken together, these results suggest strongly that the functions of these two proteins in cell migration are linked and might be mediated by their direct physical interaction, which is important for the formation of membrane ruffles.