Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
BMC Cancer ; 24(1): 248, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388902

RESUMO

BACKGROUND: Lung cancer is a leading cause of cancer-related mortality worldwide, and effective therapies are limited. Lung cancer is a leading cause of cancer-related mortality worldwide with limited effective therapy. Sorafenib is a multi-tyrosine kinase inhibitor frequently used to treat numerous types of malignant tumors. However, it has been demonstrated that sorafenib showed moderate antitumor activity and is associated with several side effects in lung cancer, which restricted its clinical application. This study aimed to examine the antitumor effect of the combination treatment of sorafenib and 5-methoxytryptophan (5-MTP) on cell growth and metastasis of Lewis lung carcinoma (LLC) cells. METHOD: The anticancer effect of the combination treatment of sorafenib and 5-MTP was determined through cytotoxicity assay and colony forming assays. The mechanism was elucidated using flow cytometry and western blotting. Wound healing and Transwell assays were conducted to evaluate the impact of the combination treatment on migration and invasion abilities. An in vivo model was employed to analyze the effect of the combination treatment on the tumorigenic ability of LLC cells. RESULT: Our results demonstrated that the sorafenib and 5-MTP combination synergistically reduced viability and proliferation compared to sorafenib or 5-MTP treatment alone. Reduction of cyclin D1 expression was observed in the sorafenib alone or combination treatments, leading to cell cycle arrest. Furthermore, the sorafenib-5-MTP combination significantly increased the inhibitory effect on migration and invasion of LLC cells compared to the single treatments. The combination also significantly downregulated vimentin and MMP9 levels, contributing to the inhibition of metastasis. The reduction of phosphorylated Akt and STAT3 expression may further contribute to the inhibitory effect on proliferation and metastasis. In vivo, the sorafenib-5-MTP combination further reduced tumor growth and metastasis compared to the treatment of sorafenib alone. CONCLUSIONS: In conclusion, our data indicate that 5-MTP sensitizes the antitumor activity of sorafenib in LLC cells in vitro and in vivo, suggesting that sorafenib-5-MTP has the potential to serve as a therapeutic option for patients with lung cancer.


Assuntos
Neoplasias Pulmonares , Triptofano/análogos & derivados , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios Antitumorais Modelo de Xenoenxerto , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Apoptose
2.
Inflamm Res ; 72(8): 1633-1647, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37458783

RESUMO

BACKGROUND AND AIM: Endotoxin-induced acute lung injury (ALI) is a complicated and fatal condition with no specific or efficient clinical treatments. 5-Methoxytryptophan (5-MTP), an endogenous metabolite of tryptophan, was revealed to block systemic inflammation. However, the specific mechanism by which 5-MTP affects ALI still needs to be clarified. The purpose of this study was to determine whether 5-MTP protected the lung by inhibiting NLRP3 inflammasome-mediated pyroptosis through the Nrf2/HO-1 signaling pathway. METHODS AND RESULTS: We used lipopolysaccharide (LPS)-stimulated C57BL/6 J mice and MH-S alveolar macrophages to create models of ALI, and 5-MTP (100 mg/kg) administration attenuated pathological lung damage in LPS-exposed mice, which was associated with decreased inflammatory cytokines and oxidative stress levels, upregulated protein expression of Nrf2 and HO-1, and suppressed Caspase-1 activation and NLRP3-mediated pyroptosis protein levels. Moreover, Nrf2-deficient mice or MH-S cells were treated with 5-MTP to further confirm the protective effect of the Nrf2/HO-1 pathway on lung damage. We found that Nrf2 deficiency partially eliminated the beneficial effect of 5-MTP on reducing oxidative stress levels and inflammatory responses and abrogating the inhibition of NLRP3-mediated pyroptosis induced by LPS. CONCLUSION: These findings suggested that 5-MTP could effectively ameliorate ALI by inhibiting NLRP3-mediated pyroptosis via the Nrf2/HO-1 signaling pathway.


Assuntos
Lesão Pulmonar Aguda , Inflamassomos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Triptofano/efeitos adversos , Endotoxinas/farmacologia , Lipopolissacarídeos/farmacologia , Piroptose , Camundongos Endogâmicos C57BL , Transdução de Sinais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo
3.
J Mol Cell Cardiol ; 158: 101-114, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34087195

RESUMO

AIMS: Myocardial infarction (MI) remains a major cause of heart failure. 5-Methoxytryptophan (5-MTP), a 5-methoxyindole metabolite of L-tryptophan, exerts anti-inflammatory and antifibrotic effects, but MI impairs the biosynthesis of cardiac 5-MTP. Therefore, we evaluated the effect of exogenous 5-MTP administration on rescuing post-MI cardiac injury. METHODS AND RESULTS: After a detailed pharmacokinetic analysis of 5-MTP, Sprague Dawley rats that had undergone left anterior descending coronary artery ligation received intraperitoneal administration of either 17 mg/kg 5-MTP or saline at 0.5 and 24 h after MI. Cardiac systolic function, infarction size, and fibrosis were evaluated using echocardiography, triphenyltetrazolium chloride staining, and Masson trichrome staining, respectively. Myocardial apoptosis was analyzed by staining for caspase-3 and cardiac troponin I. 5-MTP treatment decreased the infarct area and myocardial apoptosis; attenuated systolic dysfunction and left ventricular dilatation; and reduced cardiomyocyte hypertrophy, myocardial fibrosis, and infarct expansion. Crucially, 5-MTP alleviated oxidative stress by preserving mitochondrial antioxidant enzymes and downregulating reactive oxygen species-generating NADPH oxidase isoforms and endothelin-1. Consequently, 5-MTP-treated MI rat hearts exhibited lower levels of chemokines and cytokines, namely interleukin (IL)-1ß, IL-18, IL-6, C-C motif chemokine ligand (CCL)-2, and CCL5, accompanied by reduced infiltration of CD11b+ cells and CD4+ T cells. Notably, 5-MTP protected against H2O2-induced damage in HL-1 cardiomyocytes and human umbilical vein endothelial cells in vitro. CONCLUSION: 5-MTP prevented post-MI cardiac injury by promoting mitochondrial stabilization and controlling redox imbalance. This cytoprotective effect ameliorated macrophage and T-cell infiltration, thus reducing the infarct size, attenuating fibrosis, and restoring myocardial function.


Assuntos
Imunidade/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/imunologia , Estresse Oxidativo/efeitos dos fármacos , Triptofano/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Transformada , Modelos Animais de Doenças , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Miocardite/tratamento farmacológico , Miocardite/etiologia , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Triptofano/administração & dosagem , Triptofano/biossíntese , Triptofano/farmacocinética , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
4.
J Biomed Sci ; 28(1): 74, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749728

RESUMO

BACKGROUND: Toll-like receptor-2 (TLR2) promotes vascular smooth muscle cell (VSMC) transdifferentiation to chondrocytes and calcification in a p38 MAPK-dependent manner. Vascular 5-methoxytryptophan (5-MTP) is a newly identified factor with anti-inflammatory actions. As 5-MTP targets p38 MAPK for its actions, we postulated that 5-MTP protects against vascular chondrogenesis and calcification. METHODS: High-fat diet-induced advanced atherosclerosis in mice were performed to investigate the effect of 5-MTP on atherosclerotic lesions and calcification. VSMCs were used to determine the role of 5-MTP in VSMC chondrogenic differentiation and calcification. Alizarin red S and Alcian blue staining were used to measure VSMC calcification and chondrogenic differentiation, respectively. RESULTS: 5-MTP was detected in aortic tissues of ApoE-/- mice fed control chow. It was reduced in ApoE-/- mice fed high-fat diet (HFD), but was restored in ApoE-/-Tlr2-/- mice, suggesting that HFD reduces vascular 5-MTP production via TLR2. Intraperitoneal injection of 5-MTP or its analog into ApoE-/- mice fed HFD reduced aortic atherosclerotic lesions and calcification which was accompanied by reduction of chondrogenesis and calcium deposition. Pam3CSK4 (Pam3), ligand of TLR2, induced SMC phenotypic switch to chondrocytes. Pretreatment with 5-MTP preserved SMC contractile proteins and blocked Pam3-induced chondrocyte differentiation and calcification. 5-MTP inhibited HFD-induced p38 MAPK activation in vivo and Pam3-induced p38 MAPK activation in SMCs. 5-MTP suppressed HFD-induced CREB activation in aortic tissues and Pam3-induced CREB and NF-κB activation in SMCs. CONCLUSIONS: These findings suggest that 5-MTP is a vascular arsenal against atherosclerosis and calcification by inhibiting TLR2-mediated SMC phenotypic switch to chondrocytes and the consequent calcification. 5-MTP exerts these effects by blocking p38 MAPK activation and inhibiting CREB and NF-κB transactivation activity.


Assuntos
Aterosclerose/prevenção & controle , Calcinose/prevenção & controle , Condrogênese , Dieta Hiperlipídica/efeitos adversos , Triptofano/análogos & derivados , Animais , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Calcinose/metabolismo , Calcinose/fisiopatologia , Camundongos , Triptofano/metabolismo
5.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925793

RESUMO

Cytoguardin was identified in the conditioned medium of fibroblasts as a tryptophan metabolite, 5-methoxytryptophan (5-MTP). It is synthesized via two enzymatic steps: tryptophan hydroxylase (TPH) and hydroxyindole O-methyltransferase (HIOMT). A truncated HIOMT isoform, HIOMT298, catalyzes 5-MTP synthesis. Cancer cells produce scarce 5-MTP due to defective HIOMT298 expression. 5-MTP inhibits cancer cell COX-2 expression and thereby reduces COX-2-mediated cell proliferation and migration. 5-MTP also inhibits MMP-9 expression and thereby reduces cancer cell invasion. 5-MTP exerts its anti-cancer effect by blocking p38 MAPK and p38-mediated NF-κB and p300 HAT activation. The stable transfection of A549 cells with HIOMT298 restores 5-MTP production which renders cancer cells less aggressive. The implantation of HIOMT-transfected A549 into subcutaneous tissues of a murine xenograft tumor model shows that HIOMT-transduced A549 cells form smaller tumors and generate fewer metastatic lung nodules than control A549 cells. HIOMT298 transfection suppresses aromatic amino acid decarboxylase (AADC) expression and serotonin production. Serotonin is a cancer-promoting factor. By restoring 5-MTP and suppressing serotonin production, HIOMT298 overexpression converts cancer cells into less malignant phenotypes. The analysis of HIOMT expression in a human cancer tissue array showed reduced HIOMT levels in a majority of colorectal, pancreatic, and breast cancer. HIOMT298 may be a biomarker of human cancer progression. Furthermore, 5-MTP has the potential to be a lead compound in the development of new therapy for the chemoprevention of certain cancers such as hepatocellular cancer.


Assuntos
Metástase Neoplásica/tratamento farmacológico , Neoplasias/tratamento farmacológico , Triptofano/análogos & derivados , Triptofano/metabolismo , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Ciclo-Oxigenase 2/metabolismo , Fibroblastos/metabolismo , Humanos , Neoplasias Hepáticas/prevenção & controle , Metaloproteinases da Matriz/metabolismo , Camundongos , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Neoplasias Pancreáticas/tratamento farmacológico , Serotonina/metabolismo , Triptofano/efeitos dos fármacos , Triptofano/farmacologia
6.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445766

RESUMO

Cellular senescence contributes to aging and age-related disorders. High glucose (HG) induces mesenchymal stromal/stem cell (MSC) senescence, which hampers cell expansion and impairs MSC function. Intracellular HG triggers metabolic shift from aerobic glycolysis to oxidative phosphorylation, resulting in reactive oxygen species (ROS) overproduction. It causes mitochondrial dysfunction and morphological changes. Tryptophan metabolites such as 5-methoxytryptophan (5-MTP) and melatonin attenuate HG-induced MSC senescence by protecting mitochondrial integrity and function and reducing ROS generation. They upregulate the expression of antioxidant enzymes. Both metabolites inhibit stress-induced MSC senescence by blocking p38 MAPK signaling pathway, NF-κB, and p300 histone acetyltransferase activity. Furthermore, melatonin upregulates SIRT-1, which reduces NF-κB activity by de-acetylation of NF-κB subunits. Melatonin and 5-MTP are a new class of metabolites protecting MSCs against replicative and stress-induced cellular senescence. They provide new strategies to improve the efficiency of MSC-based therapy for diverse human diseases.


Assuntos
Senescência Celular/fisiologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Triptofano/metabolismo , Animais , Antioxidantes/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
7.
J Biomed Sci ; 27(1): 79, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32635910

RESUMO

5-methoxytryptophan (5-MTP) is an endothelial factor with anti-inflammatory properties. It is synthesized from L-tryptophan via two enzymatic steps: tryptophan hydroxylase-1 (TPH-1) and hydroxyindole O-methyltransferase. Lipopolysaccharide (LPS) and pro-inflammatory cytokines suppress endothelial 5-MTP production by inhibiting TPH-1 expression. 5-MTP protects endothelial barrier function and promotes endothelial repair, while it blocks vascular smooth muscle cell migration and proliferation by inhibiting p38 MAPK activation. 5-MTP controls macrophage transmigration and activation by inhibiting p38 MAPK and NF-κB activation. 5-MTP administration attenuates arterial intimal hyperplasia, defends against systemic inflammation and prevents renal fibrosis in relevant murine models. Serum 5-MTP level is depressed in human sepsis as well as in mice with sepsis-like disorder. It is reduced in chronic kidney disease and acute myocardial infarction in humans. The reported data suggest that serum 5-MTP may be a theranostic biomarker. In summary, 5-MTP represents a new class of tryptophan metabolite which defends against inflammation and inflammation-mediated tissue damage and fibrosis. It may be a valuable lead compound for developing new drugs to treat complex human inflammatory disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/prevenção & controle , Triptofano/análogos & derivados , Lesões do Sistema Vascular/prevenção & controle , Animais , Humanos , Camundongos , Triptofano/farmacologia
8.
J Biol Chem ; 293(28): 11131-11142, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29794137

RESUMO

5-Methoxytryptophan (5-MTP) is a tryptophan metabolite with recently discovered anti-inflammatory and tumor-suppressing activities. Its synthesis is catalyzed by a hydroxyindole O-methyltransferase (HIOMT)-like enzyme. However, the exact identity of this HIOMT in human cells remains unclear. Human HIOMT exists in several alternatively spliced isoforms, and we hypothesized that 5-MTP-producing HIOMT is a distinct isoform. Here, we show that human fibroblasts and cancer cells express the HIOMT298 isoform as contrasted with the expression of the HIOMT345 isoform in pineal cells. Sequencing analysis of the cloned isoforms revealed that HIOMT298 is identical to the sequence of a previously reported truncated HIOMT isoform. Of note, HIOMT298 expression was reduced in cancer cells and tissues. Stable transfection of A549 cancer cells with HIOMT298 restored HIOMT expression to normal levels, accompanied by 5-MTP production. Furthermore, HIOMT298 transfection caused a tryptophan-metabolic switch from serotonin to 5-MTP production. To determine the in vivo relevance of this alteration, we compared growth and lung metastasis of HIOMT298-transfected A549 cells with those of vector- or untransfected A549 cells as controls in a murine xenograft model. Of note, the HIOMT298-transfected A549 cells exhibited slower growth and lower metastasis than the controls. Our findings provide insight into the crucial role of HIOMT298 in 5-MTP production in cells and in inhibiting cancer progression and highlight the potential therapeutic value of 5-MTP for managing cancer.


Assuntos
Acetilserotonina O-Metiltransferasa/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Serotonina/metabolismo , Triptofano/análogos & derivados , Triptofano/metabolismo , Animais , Apoptose , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Circ Res ; 119(2): 222-36, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27151398

RESUMO

RATIONALE: Systemic inflammation has emerged as a key pathophysiological process that induces multiorgan injury and causes serious human diseases. Endothelium is critical in maintaining cellular and inflammatory homeostasis, controlling systemic inflammation, and progression of inflammatory diseases. We postulated that endothelium produces and releases endogenous soluble factors to modulate inflammatory responses and protect against systemic inflammation. OBJECTIVE: To identify endothelial cell-released soluble factors that protect against endothelial barrier dysfunction and systemic inflammation. METHODS AND RESULTS: We found that conditioned medium of endothelial cells inhibited cyclooxgenase-2 and interleukin-6 expression in macrophages stimulated with lipopolysaccharide. Analysis of conditioned medium extracts by liquid chromatography-mass spectrometry showed the presence of 5-methoxytryptophan (5-MTP), but not other related tryptophan metabolites. Furthermore, endothelial cell-derived 5-MTP suppressed lipopolysaccharide-induced inflammatory responses and signaling in macrophages and endotoxemic lung tissues. Lipopolysaccharide suppressed 5-MTP level in endothelial cell-conditioned medium and reduced serum 5-MTP level in the murine sepsis model. Intraperitoneal injection of 5-MTP restored serum 5-MTP accompanied by the inhibition of lipopolysaccharide-induced endothelial leakage and suppression of lipopolysaccharide- or cecal ligation and puncture-mediated proinflammatory mediators overexpression. 5-MTP administration rescued lungs from lipopolysaccharide-induced damages and prevented sepsis-related mortality. Importantly, compared with healthy subjects, serum 5-MTP level in septic patients was decreased by 65%, indicating an important clinical relevance. CONCLUSIONS: We conclude that 5-MTP belongs to a novel class of endothelium-derived protective molecules that defend against endothelial barrier dysfunction and excessive systemic inflammatory responses.


Assuntos
Anti-Inflamatórios/sangue , Endotélio Vascular/metabolismo , Endotoxemia/sangue , Endotoxemia/prevenção & controle , Triptofano/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/sangue , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Triptofano/sangue
10.
Electrophoresis ; 36(17): 2027-34, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26171676

RESUMO

The metastatic status of oral cancer is highly associated with the overall survival rate of patients. Previous studies have revealed that the endogenous tryptophan metabolite 5-methoxytryptophan (5-MTP) can downregulate cyclooxygenase-2 expression; suppress tumor proliferation, migration, and invasion; and reduce the tumor size. To improve the understanding of the molecular mechanisms involved in the regulation of 5-MTP in the tumorigenesis of oral cancer, we conducted a comparative wound healing and transwell invasion assays. Our results revealed that 5-MTP reduce oral cancer cell migration and invasion ability. In addition, the results of an in vivo assay demonstrated that the growth of primary tumors was significantly inhibited by 5-MTP in OC3 oral cancer cells and in invasive OC3-I5 oral cancer cells. Moreover, enlarged spleens were observed in OC3-I5-implanted severe combined immunodeficiency mice although 5-MTP can inhibit spleen enlargement. Through comparative proteomics, we identified 32 differentially regulated protein spots by using 2D-DIGE/MALDI-TOF MS analyses. Some of the differentially regulated proteins such as amadillo-repeat-containing X-linked protein 1, phosphoglycerate kinase 1, tropomyosin alpha-1, and tropomyosin alpha-4 may be associated with the 5-MTP-dependent inhibition of oral cancer growth and metastasis. We conclude that 5-MTP plays a crucial role in inhibiting in vitro and in vivo cancer invasion and metastasis.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Proteoma/efeitos dos fármacos , Triptofano/análogos & derivados , Animais , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Bucais/metabolismo , Invasividade Neoplásica , Proteoma/análise , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triptofano/farmacologia , Eletroforese em Gel Diferencial Bidimensional
11.
Arch Biochem Biophys ; 543: 15-22, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24384558

RESUMO

5-Methoxytryptophan (5-MTP), a catabolic product of tryptophan, can block Cox-2 overexpression in cancer cells as well as suppress cancer cell growth, migration and invasion. The aim of this study was to in vitro examine whether 5-MTP is able to reduce reactive oxygen species (ROS)-induced heart ischemia reperfusion injury and activate the cardiomyocyte's damage surveillance systems. Accordingly, rattus cardiomyocytes were treated with H2O2 as a heart ischemia reperfusion model prior to incubation with/without 5-MTP and proteomic analysis was performed to investigate the physiologic protection of 5-MTP in H2O2-induced ischemia reperfusion in cardiomyocyte. Our data demonstrated that 5-MTP treatment does protect cardiomyocyte in the ROS-induced ischemia reperfusion model. 5-MTP has also been shown to significantly facilitate cell migration and wound healing via cytoskeletal regulations. Additionally, two-dimensional differential gel electrophoresis (2D-DIGE) combined matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/TOF MS) analysis showed that 5-MTP might modulate growth-associated proteins, cytoskeleton regulation, redox regulation and protein folding to stimulate wound healing as well as prevent these ischemia reperfusion-damaged cardiomyocytes from cell death through maintaining cellular redox-balance and reducing ER-stress. To our knowledge, we report for the first time the cell repair mechanism of 5-MTP against ischemia reperfusion-damage in cardiomyocytes based on cell biology and proteomic analysis.


Assuntos
Citoproteção/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Triptofano/análogos & derivados , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Miócitos Cardíacos/patologia , Proteômica , Ratos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Transcriptoma/efeitos dos fármacos , Triptofano/farmacologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-38683422

RESUMO

BACKGROUND: In recent years, 5-Methoxytryptophan (5-MTP) has been identified as an endothelial factor with vaso-protective and anti-inflammatory properties. METHODS: In this prospective cohort study, a total of 407 patients with acute myocardial infarction (AMI) who underwent percutaneous coronary intervention (PCI) successfully were enrolled. A 1-year follow-up Kaplan-Meier survival analysis was used for evaluating the correlation between 5-MTP and major adverse cardiovascular event (MACE) while Cox proportional-hazards regression was used to identify predictive values of 5-MTP on MACE after AMI. RESULTS: Increased 5-MTP level led to a significant downtrend in the incidence of MACE (All Log-rank p < 0.05). Thus, a high baseline 5-MTP could reduce the 1-year incidence of MACE (HR = 0.33, 95%Cl 0.17-0.64, p = 0.001) and heart failure (HF) (HR = 0.28, 95% Cl 0.13-0.62, p = 0.002). Subgroup analysis indicated the predictive value of 5-MTP was more significant in patients aged ≤ 65 years and those with higher baseline NT-proBNP, T2DM, STEMI, and baseline HF with preserved LVEF (HFpEF) characteristics. CONCLUSIONS: Plasma 5-MTP is an independent and protective early biomarker for 1-year MACE and HF events in patients with AMI, especially in younger patients and those with T2DM, STEMI, and baseline HFpEF characteristics.

14.
Heliyon ; 9(9): e19501, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37810107

RESUMO

Background: Ibrutinib is an effective and well-tolerated treatment for B-cell lymphomas but is associated with an increased risk of atrial fibrillation (AF) by altering the structure of the atrium. 5-Methoxytryptophan (5-MTP) inhibits inflammatory and fibrotic processes. This study aimed to determine the effects and mechanisms of 5-MTP on the underlying mechanisms of AF caused by ibrutinib. Methods: The effect of 5-MTP on ibrutinib-related AF was investigated in male Sprague Dawley rats using echocardiographic, electrophysiological, immunofluorescent, Masson staining, and molecular analyses. Rusults: The ibrutinib+5-MTP group showed (1) a lower incidence and shorter duration of AF and accelerated atrial conduction; (2) a decreased left atrial mass and left atrial diameter; (3) decreased myocardial fibrosis in the left atrium; (4) lower atrial inflammation; (5) increased sarcoplasmic reticulum Ca2+-ATPase 2a protein expression, decreased phosphorylation of phospholamban at Thr17, and decreased sodium/calcium exchanger 1 protein expression and phosphorylation of ryanodine receptor 2 at S2814; and (6) decreased phosphorylation of CaMKII expression. 5-MTP treatment markedly activated the PI3K-Akt signaling. Inhibiting PI3K-Akt signaling significantly reversed the protective effect of 5-MTP on ibrutinib-related AF. Conclusions: These findings suggest that 5-MTP administration decreases the vulnerability of ibrutinib-related AF mainly caused by ameliorated maladaptive left atrial remodeling and dysregulation of calcium handling proteins. Mechanistically, 5-MTP treatment markedly enhanced the activation of cardiac PI3K-Akt signaling.

15.
World J Gastroenterol ; 29(47): 6148-6160, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38186686

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a highly prevalent malignancy worldwide, and new therapeutic targets urgently need to be found to prolong patient survival. 5-methoxytryptophan (5-MTP) is a tryptophan metabolite found in animals and humans. However, the effects of 5-MTP on proliferation and apoptosis of CRC cells are currently unknown. AIM: To investigate the effects of 5-MTP on the proliferation, migration, invasion, and apoptosis abilities of CRC cells. Additionally, we seek to explore whether 5-MTP has the potential to be utilized as a drug for the treatment of CRC. METHODS: In order to evaluate the effect of 5-MTP on CRC cells, a series of experiments were conducted for evaluation. Colony formation assay and Cell Counting Kit 8 assays were used to investigate the impact of 5-MTP on the proliferation of CRC cell lines. Cell cycle assays were employed to examine the effect of 5-MTP on cellular growth. In addition, we investigated the effects of 5-MTP on apoptosis and reactive oxygen species in HCT-116 cells. To obtain a deeper understanding of how 5-MTP affects CRC, we conducted a study to examine its influence on the PI3K/Akt signaling pathway in CRC cells. RESULTS: This article showed that 5-MTP promoted apoptosis and cell cycle arrest and inhibited cell proliferation in CRC cells. In many articles, it has been reported that PI3K/Akt/FoxO3a signaling pathway is one of the most important signaling pathways involved in internal regulating cell proliferation and differentiation. Nevertheless, 5-MTP combined with PI3K/Akt/FoxO3a signaling pathway inhibitors significantly promoted apoptosis and cell cycle arrest and inhibited cell proliferation in CRC cells compared with 5-MTP alone in our study. CONCLUSION: Therefore, there is strong evidence that 5-MTP can be used as an effective medicine for CRC treatment.


Assuntos
Neoplasias Colorretais , Fosfatidilinositol 3-Quinases , Animais , Humanos , Fosforilação , Proteínas Proto-Oncogênicas c-akt , Triptofano/farmacologia , Apoptose , Células HCT116 , Neoplasias Colorretais/tratamento farmacológico
16.
Front Oncol ; 12: 834941, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936759

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a common cancer of the oral cavity. Cisplatin (CDDP) is the ideal chemo-radiotherapy used for several tumor types, but resistance to the drug has become a major obstacle in treating patients with HNSCC. 5-methoxytryptophan (5-MTP), a 5-methoxyindole metabolite of tryptophan metabolism, reduces inflammation-mediated proliferation and metastasis. This study aimed to assess the anti-oral cancer activity of 5-MTP when used alone or in combination with CDDP. Results showed that CDDP dose dependently reduced the growth of SSC25 cells but not 5-MTP. The combination of CDDP and 5-MTP exerted additional inhibitory effect on the growth of SSC25 cells by attenuating the phosphorylation of STAT3. In the 4-nitroquinoline-1-oxide-induced oral cancer mouse model, 5-MTP sensitized the reduction effect of CDDP on tumorigenesis, which restricted the tongue tissue in hyperkeratotic lesion rather than squamous cell carcinoma. The combination of CDDP and 5-MTP may be a potent therapeutic strategy for HNSCC patients with radiotherapy.

17.
Cell Cycle ; 20(7): 676-688, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33734029

RESUMO

Liver fibrosis is a critical health issue in the world due to its rapidly increasing prevalence. It is of great demand to develop effective drugs for the treatment of liver fibrosis. 5-methoxytryptophan (5-MTP) has been reported to play an important role in anti-inflammatory, anti-cancer, myocardial-protective effects. However, the anti-fibrotic effect of 5-MTP is never covered in liver. Here, we investigated anti-fibrotic effects of 5-MTP on liver fibrosis and its underlying mechanism. In vitro, 5-MTP treatment could inhibit TGF-ß1-induced elevated levels of collagen I, collagen III, fibronectin and α-smooth muscle actin (SMA) by stimulating autophagy process. Mechanically, the expression of FOXO3a was enhanced by 5-MTP and then repressed the level of miR-21, eventually leading to a restoration of autophagy-related gene ATG5. Furthermore, rescue experiments showed 5-MTP could activate autophagy process and suppress the activation of LX-2 cells by regulating FOXO3a/miR-21/ATG5 pathway. Consistently, 5-MTP significantly attenuated CCl4-induced hepatic fibrosis in rat model. In conclusion, our research discovered that 5-MTP effectively alleviated liver fibrosis in vitro and in vivo, which provided new insights into the application of 5-MTP for liver fibrosis.


Assuntos
Proteína 5 Relacionada à Autofagia/biossíntese , Autofagia/efeitos dos fármacos , Proteína Forkhead Box O3/biossíntese , Cirrose Hepática/metabolismo , MicroRNAs/biossíntese , Triptofano/análogos & derivados , Animais , Autofagia/fisiologia , Proteína 5 Relacionada à Autofagia/genética , Tetracloreto de Carbono/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Proteína Forkhead Box O3/genética , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Masculino , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Triptofano/farmacologia , Triptofano/uso terapêutico
18.
Cancers (Basel) ; 13(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34771474

RESUMO

5-methoxytryptophan (5-MTP) is a recently discovered tryptophan (Trp) metabolite with anti-inflammatory and tumor-suppressing actions. Its synthesis is catalyzed by hydroxyindole O-methyltransferase (HIOMT). HIOMT levels were reported to be decreased in some patients with colorectal, pancreatic and breast cancer. It is unclear whether tissue HIOMT levels is altered in hepatocellular carcinoma (HCC). It is also unclear whether serum 5-MTP concentration is influenced by HCC. In this study, 150 HCC and adjacent normal liver tissues and serum samples were obtained from the HCC biobank established by a prospective multicenter study. Serum samples from 47 healthy subjects were included as a reference. HIOMT mRNA was measured by real time PCR. Serum 5-MTP and selected Trp metabolites were analyzed by quantitative LC-MS. HCC tissue HIOMT mRNA levels adjusted for adjacent normal tissue HIOMT mRNA levels was associated with overall and relapse-free (RF) survival. Combined serum 5-MTP or tissue HIOMT mRNA and serum kynurenine (Kyn) analysis predicted prolonged overall and RF survival following liver resection. A high serum 5-MTP or tissue HIOMT mRNA and low serum Kyn is associated with long-term survival. In conclusion, tumor tissue HIOMT mRNA and serum 5-MTP are potential biomarkers of HCC, especially when analyzed in combination with serum Kyn.

19.
Front Pharmacol ; 12: 759199, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858185

RESUMO

Tissue fibrosis causes debilitating human diseases such as liver cirrhosis, heart failure, chronic kidney disease and pulmonary insufficiency. It is a dynamic process orchestrated by specific subsets of monocyte-macrophages, fibroblasts, pericytes and hepatic stellate cells. Fibrosis is linked to tissue inflammation. Pro-inflammatory macrophages promote fibrosis by driving myofibroblast differentiation and macrophage myofibroblast transition. Myofibroblasts express α-smooth muscle cell actin (α-SMA) and secrete extracellular matrix (ECM) proteins notably collagen I and III. Deposition of ECM proteins at injury sites and interstitial tissues distorts normal structure and impairs vital functions. Despite advances in the mechanisms of fibrosis at cellular, molecular and genetic levels, prevention and treatment of fibrotic diseases remain poorly developed. Recent reports suggest that 5-methoxytryptophan (5-MTP) is effective in attenuating injury-induced liver, kidney, cardiac and pulmonary fibrosis. It inhibits macrophage activation and blocks fibroblast differentiation to myofibroblasts. Furthermore, it inhibits hepatic stellate cell differentiation into myofibroblasts. As 5-MTP is an endogenous molecule derived from tryptophan catabolism via tryptophan hydroxylase pathway, it is well-suited as a lead compound for developing new anti-fibrotic drugs. This article provides an overview of 5-MTP synthesis, and a critical review of its anti-fibrotic activities. Its mechanisms of actions and potential therapeutic value will be discussed.

20.
J Microbiol Immunol Infect ; 53(5): 797-802, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30630711

RESUMO

BACKGROUND: This clinical study investigates the role of 5-methoxytryptophan (5-MTP) in pediatric systemic lupus erythematosus (SLE), with a particular interest in lupus nephritis (LN). PATIENTS AND METHODS: One hundred ten children with SLE were enrolled in the cohort study. Among the patients, seventy-seven (70%) had active LN and thirty-three (30%) were not present with LN during their first visit to the clinic. The diagnoses of LN were biopsy-proven. Serum samples were collected before and after administration of immunosuppressive medications to evaluate 5-MTP levels and regular laboratory data. Data were analyzed longitudinally. RESULTS: Before any treatment started, patients with active LN had significantly higher 5-MTP levels as compared to patients with no LN (1.021 ± 0.709 vs. 0.719 ± 0.606, P = 0.0456). Also, in patient with active LN, 5-MTP level was significant decreased after treatment, compared with the levels before treatment (1.021 ± 0.709 vs. 0.802 ± 0.597, P = 0.0484). Patients who reached complete remission also had significantly higher initial serum 5-MTP levels than that in patients with no remission (1.244 ± 0.784 vs. 0.846 ± 0.556, P = 0.0488). There was an overall reduction in 5-MTP levels after six months of immunosuppressive treatment, regardless of the disease outcome. Subgroup analysis further revealed a significantly higher 5-MTP level during the active stage of LN (1.127 ± 0.149 vs. 0.742 ± 0.092, P = 0.0384). CONCLUSION: We demonstrated that serum 5-MTP level is positively correlated to the disease activity, prognosis, and remission status of pediatric LN in vivo.


Assuntos
Nefrite Lúpica/tratamento farmacológico , Triptofano/análogos & derivados , Triptofano/farmacologia , Adolescente , Anticorpos , Biópsia , Criança , Feminino , Humanos , Imunossupressores , Masculino , Prognóstico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA