RESUMO
5G New Radio (NR)-V2X, standardized by 3GPP Release 16, includes a distributed resource allocation Mode, known as Mode 2, that allows vehicles to autonomously select transmission resources using either sensing-based semi-persistent scheduling (SB-SPS) or dynamic scheduling (DS). In unmanaged 5G-NR-V2X scenarios, SB-SPS loses effectiveness with aperiodic and variable data. DS, while better for aperiodic traffic, faces challenges due to random selection, particularly in high traffic density scenarios, leading to increased collisions. To address these limitations, this study models the Cellular V2X network as a decentralized multi-agent networked Markov decision process (MDP), where each vehicle agent uses the Shared Experience Actor-Critic (SEAC) technique to optimize performance. The superiority of SEAC over SB-SPS and DS is demonstrated through simulations, showing that the SEAC with an N-step approach achieves an average improvement of approximately 18-20% in enhancing reliability, reducing collisions, and improving resource utilization under high vehicular density scenarios with aperiodic traffic patterns.
RESUMO
Direct communication between vehicles and surrounding objects, called vehicle-to-everything (V2X), is ready for the market and promises to raise the level of safety and comfort while driving. To this aim, specific bands have been reserved in some countries worldwide and different wireless technologies have been developed; however, these are not interoperable. Recently, the issue of co-channel coexistence has been raised, leading the European Telecommunications Standards Institute (ETSI) to propose a number of solutions, called mitigation methods, for the coexistence of the IEEE 802.11p based ITS-G5 and the 3GPP fourth generation (4G) long term evolution (LTE)-V2X sidelink. In this work, several of the envisioned alternatives are investigated when adapted to the coexistence of the IEEE 802.11p with its enhancement IEEE 802.11bd and the latest 3GPP standards, i.e., the fifth generation (5G) new radio (NR)-V2X. The results, obtained through an open-source simulator that is shared with the research community for the evaluation of additional proposals, show that the methods called A and C, which require modifications to the standards, improve the transmission range of one or both systems without affecting the other, at least in low-density scenarios.
RESUMO
The accelerated growth of 5G technology has facilitated substantial progress in the realm of vehicle-to-everything (V2X) communications. Consequently, achieving optimal network performance and addressing congestion-related challenges have become paramount. This research proposes a unique hybrid power and rate control management strategy for distributed congestion control (HPR-DCC) focusing on 5G-NR-V2X sidelink communications. The primary objective of this strategy is to enhance network performance while simultaneously preventing congestion. By implementing the HPR-DCC strategy, a more fine-grained and adaptive control over the transmit power and transmission rate can be achieved. This enables efficient control by dynamically adjusting transmission parameters based on the network conditions. This study outlines the system model and methodology used to develop the HPR-DCC algorithm and investigates its characteristics of stability and convergence. Simulation results indicate that the proposed method effectively controls the maximum CBR value at 64% during high congestion scenarios, which leads to a 6% performance improvement over the conventional DCC approach. Furthermore, this approach enhances the signal reception range by 20 m, while maintaining the 90% packet reception ratio (PRR). The proposed HPR-DCC contributes to optimizing the quality and reliability of 5G-NR-V2X sidelink communication and holds great promise for advancing V2X applications in intelligent transportation systems.
RESUMO
In the development of autonomous driving technology, 5G-NR vehicle-to-everything (V2X) technology is a key technology that enhances safety and enables effective management of traffic information. Road-side units (RSUs) in 5G-NR V2X provide nearby vehicles with information and exchange traffic, and safety information with future autonomous vehicles, enhancing traffic safety and efficiency. This paper proposes a communication system for vehicle networks based on a 5G cellular network with RSUs consisting of the base station (BS) and user equipment (UE), and validates the system performance when providing services from different RSUs. The proposed approach maximizes the utilization of the entire network and ensures the reliability of V2I/V2N links between vehicles and each RSU. It also minimizes the shadowing area in the 5G-NR V2X environment, and maximizes the average throughput of vehicles through collaborative access between BS- and UE-type RSUs. The paper applies various resource management techniques, such as dynamic inter-cell interference coordination (ICIC), coordinated scheduling coordinated multi-point (CS-CoMP), cell range extension (CRE), and 3D beamforming, to achieve high reliability requirements. Simulation results demonstrate improved performance in outage probability, reduced shadowing area, and increased reliability through decreased interference and increased average throughput when collaborating with BS- and UE-type RSUs simultaneously.
RESUMO
Developing radio access technologies that enable reliable and low-latency vehicular communications have become of the utmost importance with the rise of interest in autonomous vehicles. The Third Generation Partnership Project (3GPP) has developed Vehicle to Everything (V2X) specifications based on the 5G New Radio Air Interface (NR-V2X) to support connected and automated driving use cases, with strict requirements to fulfill the constantly evolving vehicular applications, communication, and service demands of connected vehicles, such as ultra-low latency and ultra-high reliability. This paper presents an analytical model for evaluating the performance of NR-V2X communications, with particular reference to the sensing-based semi-persistent scheduling operation defined in the NR-V2X Mode 2, in comparison with legacy sidelink V2X over LTE, specified as LTE-V2X Mode 4. We consider a vehicle platooning scenario and evaluate the impact of multiple access interference on the packet success probability, by varying the available resources, the number of interfering vehicles, and their relative positions. The average packet success probability is determined analytically for LTE-V2X and NR-V2X, taking into account the different physical layer specifications, and the Moment Matching Approximation (MMA) is used to approximate the statistics of the signal-to-interference-plus-noise ratio (SINR) under the assumption of a Nakagami-lognormal composite channel model. The analytical approximation is validated against extensive Matlab simulations that a show good accuracy. The results confirm a boost in performance with NR-V2X against LTE-V2X, particularly for high inter-vehicle distance and a large number of vehicles, providing a concise yet accurate modeling rationale for planning and adaptation of the configuration and parameter setup of vehicle platoons, without having to resort to extensive computer simulation or experimental measurements.