Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Mol Cell ; 81(11): 2374-2387.e3, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33905683

RESUMO

Adenosine-to-inosine editing is catalyzed by ADAR1 at thousands of sites transcriptome-wide. Despite intense interest in ADAR1 from physiological, bioengineering, and therapeutic perspectives, the rules of ADAR1 substrate selection are poorly understood. Here, we used large-scale systematic probing of ∼2,000 synthetic constructs to explore the structure and sequence context determining editability. We uncover two structural layers determining the formation and propagation of A-to-I editing, independent of sequence. First, editing is robustly induced at fixed intervals of 35 bp upstream and 30 bp downstream of structural disruptions. Second, editing is symmetrically introduced on opposite sites on a double-stranded structure. Our findings suggest a recursive model for RNA editing, whereby the structural alteration induced by the editing at one site iteratively gives rise to the formation of an additional editing site at a fixed periodicity, serving as a basis for the propagation of editing along and across both strands of double-stranded RNA structures.


Assuntos
Adenosina Desaminase/genética , Adenosina/metabolismo , Inosina/metabolismo , Edição de RNA , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/genética , Células A549 , Adenosina/genética , Adenosina Desaminase/metabolismo , Animais , Pareamento de Bases , Células HEK293 , Humanos , Inosina/genética , Células MCF-7 , Camundongos , Células NIH 3T3 , Conformação de Ácido Nucleico , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(12): e2319235121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466838

RESUMO

A-to-I RNA editing catalyzed by adenosine-deaminase-acting-on-RNA (ADARs) was assumed to be unique to metazoans because fungi and plants lack ADAR homologs. However, genome-wide messenger RNA (mRNA) editing was found to occur specifically during sexual reproduction in filamentous ascomycetes. Because systematic characterization of adenosine/cytosine deaminase genes has implicated the involvement of TAD2 and TAD3 orthologs in A-to-I editing, in this study, we used genetic and biochemical approaches to characterize the role of FgTAD2, an essential adenosine-deaminase-acting-on-tRNA (ADAT) gene, in mRNA editing in Fusarium graminearum. FgTAD2 had a sexual-stage-specific isoform and formed heterodimers with enzymatically inactive FgTAD3. Using a repeat-induced point (RIP) mutation approach, we identified 17 mutations in FgTAD2 that affected mRNA editing during sexual reproduction but had no effect on transfer RNA (tRNA) editing and vegetative growth. The functional importance of the H352Y and Q375*(nonsense) mutations in sexual reproduction and mRNA editing were confirmed by introducing specific point mutations into the endogenous FgTAD2 allele in the wild type. An in vitro assay was developed to show that FgTad2-His proteins purified from perithecia, but not from vegetative hyphae, had mRNA editing activities. Moreover, the H352Y mutation affected the enzymatic activity of FgTad2 to edit mRNA but had no effect on its ADAT activity. We also identified proteins co-purified with FgTad2-His by mass spectrometry analysis and found that two of them have the RNA recognition motif. Taken together, genetic and biochemical data from this study demonstrated that FgTad2, an ADAT, catalyzes A-to-I mRNA editing with the stage-specific isoform and cofactors during sexual reproduction in fungi.


Assuntos
Ascomicetos , Edição de RNA , Edição de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ascomicetos/genética , Adenosina Desaminase/metabolismo , RNA de Transferência/metabolismo , Isoformas de Proteínas/genética , Adenosina/metabolismo
3.
RNA ; 30(5): 512-520, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38531652

RESUMO

Inosine (I), resulting from the deamination of adenosine (A), is a prominent modification in the human transcriptome. The enzymes responsible for the conversion of adenosine to inosine in human mRNAs are the ADARs (adenosine deaminases acting on RNA). Inosine modification introduces a layer of complexity to mRNA processing and function, as it can impact various aspects of RNA biology, including mRNA stability, splicing, translation, and protein binding. The relevance of this process is emphasized in the growing number of human disorders associated with dysregulated A-to-I editing pathways. Here, we describe the impact of the A-to-I conversion on the structure and stability of duplex RNA and on the consequences of this modification at different locations in mRNAs. Furthermore, we highlight specific open questions regarding the interplay between inosine formation in duplex RNA and the innate immune response.


Assuntos
Edição de RNA , RNA , Humanos , RNA Mensageiro/metabolismo , RNA/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Inosina/metabolismo , Adenosina/genética , Adenosina/metabolismo
4.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38980372

RESUMO

Around 50 years ago, molecular biology opened the path to understand changes in forms, adaptations, complexity, or the basis of human diseases through myriads of reports on gene birth, gene duplication, gene expression regulation, and splicing regulation, among other relevant mechanisms behind gene function. Here, with the advent of big data and artificial intelligence (AI), we focus on an elusive and intriguing mechanism of gene function regulation, RNA editing, in which a single nucleotide from an RNA molecule is changed, with a remarkable impact in the increase of the complexity of the transcriptome and proteome. We present a new generation approach to assess the functional conservation of the RNA-editing targeting mechanism using two AI learning algorithms, random forest (RF) and bidirectional long short-term memory (biLSTM) neural networks with an attention layer. These algorithms, combined with RNA-editing data coming from databases and variant calling from same-individual RNA and DNA-seq experiments from different species, allowed us to predict RNA-editing events using both primary sequence and secondary structure. Then, we devised a method for assessing conservation or divergence in the molecular mechanisms of editing completely in silico: the cross-testing analysis. This novel method not only helps to understand the conservation of the editing mechanism through evolution but could set the basis for achieving a better understanding of the adenosine-targeting mechanism in other fields.


Assuntos
Aprendizado de Máquina , Edição de RNA , Humanos , Algoritmos , Simulação por Computador , Biologia Computacional/métodos , Redes Neurais de Computação , RNA/genética , RNA/metabolismo
5.
Mol Cell ; 69(1): 126-135.e6, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29304330

RESUMO

N6-methyladenosine (m6A) and adenosine-to-inosine (A-to-I) editing are two of the most abundant RNA modifications, both at adenosines. Yet, the interaction of these two types of adenosine modifications is largely unknown. Here we show a global A-to-I difference between m6A-positive and m6A-negative RNA populations. Both the presence and extent of A-to-I sites in m6A-negative RNA transcripts suggest a negative correlation between m6A and A-to-I. Suppression of m6A-catalyzing enzymes results in global A-to-I RNA editing changes. Further depletion of m6A modification increases the association of m6A-depleted transcripts with adenosine deaminase acting on RNA (ADAR) enzymes, resulting in upregulated A-to-I editing on the same m6A-depleted transcripts. Collectively, the effect of m6A on A-to-I suggests a previously underappreciated interplay between two distinct and abundant RNA modifications, highlighting a complex epitranscriptomic landscape.


Assuntos
Adenosina/análogos & derivados , Adenosina/química , Inosina/química , Edição de RNA/genética , RNA/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica/genética , Células HEK293 , Células HeLa , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
6.
RNA ; 29(10): 1509-1519, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451866

RESUMO

As one of the most prevalent RNA modifications in animals, adenosine-to-inosine (A-to-I) RNA editing facilitates the environmental adaptation of organisms by diversifying the proteome in a temporal-spatial manner. In flies and bees, the editing enzyme Adar has independently gained two different autorecoding sites that form an autofeedback loop, stabilizing the overall editing efficiency. This ensures cellular homeostasis by keeping the normal function of target genes. However, in a broader range of insects, the evolutionary dynamics and significance of this Adar autoregulatory mechanism are unclear. We retrieved the genomes of 377 arthropod species covering the five major insect orders (Hemiptera, Hymenoptera, Coleoptera, Diptera, and Lepidoptera) and aligned the Adar autorecoding sites across all genomes. We found that the two autorecoding sites underwent compensatory gains and losses during the evolution of two orders with the most sequenced species (Diptera and Hymenoptera), and that the two editing sites were mutually exclusive among them: One editable site is significantly linked to another uneditable site. This autorecoding mechanism of Adar could flexibly diversify the proteome and stabilize global editing activity. Many insects independently selected different autorecoding sites to achieve a feedback loop and regulate the global RNA editome, revealing an interesting phenomenon during evolution. Our study reveals the evolutionary force acting on accurate regulation of RNA editing activity in insects and thus deepens our understanding of the functional importance of RNA editing in environmental adaptation and evolution.


Assuntos
Edição de RNA , RNA , Animais , RNA/genética , Edição de RNA/genética , Proteoma/genética , Sequência de Bases , Insetos/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Inosina/genética , Inosina/metabolismo
7.
RNA ; 29(9): 1325-1338, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37290963

RESUMO

The RNA editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) is an essential regulator of the innate immune response to both cellular and viral double-stranded RNA (dsRNA). Adenosine-to-inosine (A-to-I) editing by ADAR1 modifies the sequence and structure of endogenous dsRNA and masks it from the cytoplasmic dsRNA sensor melanoma differentiation-associated protein 5 (MDA5), preventing innate immune activation. Loss-of-function mutations in ADAR are associated with rare autoinflammatory disorders including Aicardi-Goutières syndrome (AGS), defined by a constitutive systemic up-regulation of type I interferon (IFN). The murine Adar gene encodes two protein isoforms with distinct functions: ADAR1p110 is constitutively expressed and localizes to the nucleus, whereas ADAR1p150 is primarily cytoplasmic and is inducible by IFN. Recent studies have demonstrated the critical requirement for ADAR1p150 to suppress innate immune activation by self dsRNAs. However, detailed in vivo characterization of the role of ADAR1p150 during development and in adult mice is lacking. We identified a new ADAR1p150-specific knockout mouse mutant based on a single nucleotide deletion that resulted in the loss of the ADAR1p150 protein without affecting ADAR1p110 expression. The Adar1p150 -/- died embryonically at E11.5-E12.5 accompanied by cell death in the fetal liver and an activated IFN response. Somatic loss of ADAR1p150 in adults was lethal and caused rapid hematopoietic failure, demonstrating an ongoing requirement for ADAR1p150 in vivo. The generation and characterization of this mouse model demonstrates the essential role of ADAR1p150 in vivo and provides a new tool for dissecting the functional differences between ADAR1 isoforms and their physiological contributions.


Assuntos
Adenosina Desaminase , RNA de Cadeia Dupla , Camundongos , Animais , Camundongos Knockout , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Homeostase/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Desenvolvimento Embrionário
8.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37150785

RESUMO

A-to-I editing is the most prevalent RNA editing event, which refers to the change of adenosine (A) bases to inosine (I) bases in double-stranded RNAs. Several studies have revealed that A-to-I editing can regulate cellular processes and is associated with various human diseases. Therefore, accurate identification of A-to-I editing sites is crucial for understanding RNA-level (i.e. transcriptional) modifications and their potential roles in molecular functions. To date, various computational approaches for A-to-I editing site identification have been developed; however, their performance is still unsatisfactory and needs further improvement. In this study, we developed a novel stacked-ensemble learning model, ATTIC (A-To-I ediTing predICtor), to accurately identify A-to-I editing sites across three species, including Homo sapiens, Mus musculus and Drosophila melanogaster. We first comprehensively evaluated 37 RNA sequence-derived features combined with 14 popular machine learning algorithms. Then, we selected the optimal base models to build a series of stacked ensemble models. The final ATTIC framework was developed based on the optimal models improved by the feature selection strategy for specific species. Extensive cross-validation and independent tests illustrate that ATTIC outperforms state-of-the-art tools for predicting A-to-I editing sites. We also developed a web server for ATTIC, which is publicly available at http://web.unimelb-bioinfortools.cloud.edu.au/ATTIC/. We anticipate that ATTIC can be utilized as a useful tool to accelerate the identification of A-to-I RNA editing events and help characterize their roles in post-transcriptional regulation.


Assuntos
Drosophila melanogaster , Edição de RNA , Animais , Camundongos , Humanos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , RNA/genética , Adenosina/genética , Adenosina/metabolismo , Inosina/genética , Inosina/metabolismo
9.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36681936

RESUMO

A-to-I RNA editing diversifies human transcriptome to confer its functional effects on the downstream genes or regulations, potentially involving in neurodegenerative pathogenesis. Its variabilities are attributed to multiple regulators, including the key factor of genetic variants. To comprehensively investigate the potentials of neurodegenerative disease-susceptibility variants from the view of A-to-I RNA editing, we analyzed matched genetic and transcriptomic data of 1596 samples across nine brain tissues and whole blood from two large consortiums, Accelerating Medicines Partnership-Alzheimer's Disease and Parkinson's Progression Markers Initiative. The large-scale and genome-wide identification of 95 198 RNA editing quantitative trait loci revealed the preferred genetic effects on adjacent editing events. Furthermore, to explore the underlying mechanisms of the genetic controls of A-to-I RNA editing, several top RNA-binding proteins were pointed out, such as EIF4A3, U2AF2, NOP58, FBL, NOP56 and DHX9, since their regulations on multiple RNA-editing events were probably interfered by these genetic variants. Moreover, these variants may also contribute to the variability of other molecular phenotypes associated with RNA editing, including the functions of 3 proteins, expressions of 277 genes and splicing of 449 events. All the analyses results shown in NeuroEdQTL (https://relab.xidian.edu.cn/NeuroEdQTL/) constituted a unique resource for the understanding of neurodegenerative pathogenesis from genotypes to phenotypes related to A-to-I RNA editing.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/genética , Edição de RNA , Transcriptoma , Perfilação da Expressão Gênica , Locos de Características Quantitativas , Fator de Iniciação 4A em Eucariotos/genética , RNA Helicases DEAD-box/genética
10.
EMBO Rep ; 24(5): e55835, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36975179

RESUMO

ADAR1 -mediated A-to-I RNA editing is a self-/non-self-discrimination mechanism for cellular double-stranded RNAs. ADAR mutations are one cause of Aicardi-Goutières Syndrome, an inherited paediatric encephalopathy, classed as a "Type I interferonopathy." The most common ADAR1 mutation is a proline 193 alanine (p.P193A) mutation, mapping to the ADAR1p150 isoform-specific Zα domain. Here, we report the development of an independent murine P195A knock-in mouse, homologous to human P193A. The Adar1P195A/P195A mice are largely normal and the mutation is well tolerated. When the P195A mutation is compounded with an Adar1 null allele (Adar1P195A/- ), approximately half the animals are runted with a shortened lifespan while the remaining Adar1P195A/- animals are normal, contrasting with previous reports. The phenotype of the Adar1P195A/- animals is both associated with the parental genotype and partly non-genetic/environmental. Complementation with an editing-deficient ADAR1 (Adar1P195A/E861A ), or the loss of MDA5, rescues phenotypes in the Adar1P195A/- mice.


Assuntos
Edição de RNA , RNA de Cadeia Dupla , Humanos , Camundongos , Animais , Criança , Fenótipo , Mutação , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo
11.
Cell Mol Life Sci ; 81(1): 136, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478033

RESUMO

BACKGROUND: Metazoan adenosine-to-inosine (A-to-I) RNA editing resembles A-to-G mutation and increases proteomic diversity in a temporal-spatial manner, allowing organisms adapting to changeable environment. The RNA editomes in many major animal clades remain unexplored, hampering the understanding on the evolution and adaptation of this essential post-transcriptional modification. METHODS: We assembled the chromosome-level genome of Coridius chinensis belonging to Hemiptera, the fifth largest insect order where RNA editing has not been studied yet. We generated ten head RNA-Seq libraries with DNA-Seq from the matched individuals. RESULTS: We identified thousands of high-confidence RNA editing sites in C. chinensis. Overrepresentation of nonsynonymous editing was observed, but conserved recoding across different orders was very rare. Under cold stress, the global editing efficiency was down-regulated and the general transcriptional processes were shut down. Nevertheless, we found an interesting site with "conserved editing but non-conserved recoding" in potassium channel Shab which was significantly up-regulated in cold, serving as a candidate functional site in response to temperature stress. CONCLUSIONS: RNA editing in C. chinensis largely recodes the proteome. The first RNA editome in Hemiptera indicates independent origin of beneficial recoding during insect evolution, which advances our understanding on the evolution, conservation, and adaptation of RNA editing.


Assuntos
Adenosina , RNA , Humanos , Animais , RNA/genética , Adenosina/genética , Íntrons , Proteômica , Inosina/genética , Insetos/genética
12.
BMC Biol ; 22(1): 106, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715001

RESUMO

BACKGROUND: The significance of A-to-I RNA editing in nervous system development is widely recognized; however, its influence on retina development remains to be thoroughly understood. RESULTS: In this study, we performed RNA sequencing and ribosome profiling experiments on developing mouse retinas to characterize the temporal landscape of A-to-I editing. Our findings revealed temporal changes in A-to-I editing, with distinct editing patterns observed across different developmental stages. Further analysis showed the interplay between A-to-I editing and alternative splicing, with A-to-I editing influencing splicing efficiency and the quantity of splicing events. A-to-I editing held the potential to enhance translation diversity, but this came at the expense of reduced translational efficiency. When coupled with splicing, it could produce a coordinated effect on gene translation. CONCLUSIONS: Overall, this study presents a temporally resolved atlas of A-to-I editing, connecting its changes with the impact on alternative splicing and gene translation in retina development.


Assuntos
Biossíntese de Proteínas , Edição de RNA , Retina , Animais , Camundongos , Retina/metabolismo , Retina/embriologia , Processamento Alternativo , Inosina/metabolismo , Inosina/genética , Adenosina/metabolismo
13.
BMC Genomics ; 25(1): 431, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693480

RESUMO

Ophthalmic manifestations have recently been observed in acute and post-acute complications of COVID-19 caused by SARS-CoV-2 infection. Our precious study has shown that host RNA editing is linked to RNA viral infection, yet ocular adenosine to inosine (A-to-I) RNA editing during SARS-CoV-2 infection remains uninvestigated in COVID-19. Herein we used an epitranscriptomic pipeline to analyze 37 samples and investigate A-to-I editing associated with SARS-CoV-2 infection, in five ocular tissue types including the conjunctiva, limbus, cornea, sclera, and retinal organoids. Our results revealed dramatically altered A-to-I RNA editing across the five ocular tissues. Notably, the transcriptome-wide average level of RNA editing was increased in the cornea but generally decreased in the other four ocular tissues. Functional enrichment analysis showed that differential RNA editing (DRE) was mainly in genes related to ubiquitin-dependent protein catabolic process, transcriptional regulation, and RNA splicing. In addition to tissue-specific RNA editing found in each tissue, common RNA editing was observed across different tissues, especially in the innate antiviral immune gene MAVS and the E3 ubiquitin-protein ligase MDM2. Analysis in retinal organoids further revealed highly dynamic RNA editing alterations over time during SARS-CoV-2 infection. Our study thus suggested the potential role played by RNA editing in ophthalmic manifestations of COVID-19, and highlighted its potential transcriptome impact, especially on innate immunity.


Assuntos
COVID-19 , Edição de RNA , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/virologia , SARS-CoV-2/genética , Adenosina/metabolismo , Inosina/metabolismo , Inosina/genética , Transcriptoma , Olho/metabolismo , Olho/virologia
14.
BMC Genomics ; 25(1): 803, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187830

RESUMO

BACKGROUND: Adenosine-to-inosine (A-to-I) RNA editing is a co-/post-transcriptional modification introducing A-to-G variations in RNAs. There is extensive discussion on whether the flexibility of RNA editing exerts a proteomic diversification role, or it just acts like hardwired mutations to correct the genomic allele. Eusocial insects evolved the ability to generate phenotypically differentiated individuals with the same genome, indicating the involvement of epigenetic/transcriptomic regulation. METHODS: We obtained the genomes of 104 Hymenoptera insects and the transcriptomes of representative species. Comparative genomic analysis was performed to parse the evolutionary trajectory of a regulatory Ile > Met auto-recoding site in Adar gene. RESULTS: At genome level, the pre-editing Ile codon is conserved across a node containing all eusocial hymenopterans. At RNA level, the editing events are confirmed in representative species and shows considerable condition-specificity. Compared to random expectation, the editable Ile codon avoids genomic substitutions to Met or to uneditable Ile codons, but does not avoid mutations to other unrelated amino acids. CONCLUSIONS: The flexibility of Adar auto-recoding site in Hymenoptera is selectively maintained, supporting the flexible RNA editing hypothesis. We proposed a new angle to view the adaptation of RNA editing, providing another layer to explain the great phenotypical plasticity of eusocial insects.


Assuntos
Adenosina Desaminase , Adenosina , Evolução Molecular , Inosina , Edição de RNA , Animais , Inosina/metabolismo , Inosina/genética , Adenosina/metabolismo , Adenosina/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Filogenia , Insetos/genética , Himenópteros/genética , Transcriptoma , Genoma de Inseto
15.
Mol Genet Genomics ; 299(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170228

RESUMO

Mutation is the major cause of phenotypic innovations. Apart from DNA mutations, the alteration on RNA such as the ADAR-mediated A-to-I RNA editing could also shape the phenotype. These two layers of variations have not been systematically combined to study their collective roles in cancers. We collected the high-quality transcriptomes of ten hepatocellular carcinoma (HCC) and the matched control samples. We systematically identified HCC-specific mutations in the exonic regions and profiled the A-to-I RNA editome in each sample. All ten HCC samples had mutations in the CDS of ADAR2 gene (dsRNA-binding domain or catalytic domain). The consequence of these mutations converged to the elevation of ADAR2 efficiency as reflected by the global increase of RNA editing levels in HCC. The up-regulated editing sites (UES) were enriched in the CDS and UTR of oncogenes and tumor suppressor genes (TSG), indicating the possible roles of these target genes in HCC oncogenesis. We present the mutation-ADAR2-UES-oncogene/TSG-HCC axis that explains how mutations at different layers would finally lead to abnormal phenotype. In the light of central dogma, our work provides novel insights into how to fully take advantage of the transcriptome data to decipher the consequence of mutations.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/genética , Mutação , RNA , RNA não Traduzido
16.
Mol Genet Genomics ; 299(1): 46, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642133

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing, resembling A-to-G mutation, confers adaptiveness by increasing proteomic diversity in a temporal-spatial manner. This evolutionary theory named "proteomic diversifying hypothesis" has only partially been tested in very few organisms like Drosophila melanogaster, mainly by observing the positive selection on nonsynonymous editing events. To find additional genome-wide evidences supporting this interesting assumption, we retrieved the genomes of four Drosophila species and collected 20 deep-sequenced transcriptomes of different developmental stages and neuron populations of D. melanogaster. We systematically profiled the RNA editomes in these samples and performed meticulous comparative genomic analyses. Further evidences were found to support the diversifying hypothesis. (1) None of the nonsynonymous editing sites in D. melanogaster had ancestral G-alleles, while the silent editing sites had an unignorable fraction of ancestral G-alleles; (2) Only very few nonsynonymous editing sites in D. melanogaster had corresponding G-alleles derived in the genomes of sibling species, and the fraction of such situation was significantly lower than that of silent editing sites; (3) The few nonsynonymous editing with corresponding G-alleles had significantly more variable editing levels (across samples) than other nonsynonymous editing sites in D. melanogaster. The proteomic diversifying nature of RNA editing in Drosophila excludes the restorative role which favors an ancestral G-allele. The few fixed G-alleles in sibling species might facilitate the adaptation to particular environment and the corresponding nonsynonymous editing in D. melanogaster would introduce stronger advantage of flexible proteomic diversification. With multi-Omics data, our study consolidates the nature of evolutionary significance of A-to-I RNA editing sites in model insects.


Assuntos
Drosophila melanogaster , RNA , Animais , RNA/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteômica , Edição de RNA/genética , Adenosina/genética , Adenosina/metabolismo , Inosina/genética , Inosina/metabolismo , Genômica , Drosophila/genética
17.
Cell Biochem Funct ; 42(3): e3996, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561942

RESUMO

Breast cancer (BC) poses a persistent global health challenge, particularly in countries with elevated human development indices linked to factors such as increased life expectancy, education, and wealth. Despite therapeutic progress, challenges persist, and the role of epitranscriptomic RNA modifications in BC remains inadequately understood. The epitranscriptome, comprising diverse posttranscriptional modifications on RNA molecules, holds the potential to intricately modulate RNA function and regulation, implicating dysregulation in various diseases, including BC. Noncoding RNAs (ncRNAs), acting as posttranscriptional regulators, influence physiological and pathological processes, including cancer. RNA modifications in long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) add an extra layer to gene expression control. This review delves into recent insights into epitranscriptomic RNA modifications, such as N-6-methyladenosine (m6A), adenine-to-inosine (A-to-I) editing, and 5-methylcytosine (m5C), specifically in the context of lncRNA and miRNAs in BC, highlighting their potential implications in BC development and progression. Understanding this intricate regulatory landscape is vital for deciphering the molecular mechanisms underlying BC and identifying potential therapeutic targets.


Assuntos
Adenina/análogos & derivados , Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia
18.
J Biol Chem ; 298(3): 101682, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124003

RESUMO

miRNAs are short noncoding RNA molecules that regulate gene expression by inhibiting translation or inducing degradation of target mRNAs. miRNAs are often expressed as polycistronic transcripts, so-called miRNA clusters, containing several miRNA precursors. The largest mammalian miRNA cluster, the miR-379-410 cluster, is expressed primarily during embryonic development and in the adult brain; however, downstream regulation of this cluster is not well understood. Here, we investigated adenosine deamination to inosine (RNA editing) in the miR-379-410 cluster by adenosine deaminase acting on RNA (ADAR) enzymes as a possible mechanism modulating the expression and activity of these miRNAs in a brain-specific manner. We show that the levels of editing in the majority of mature miRNAs are lower than the editing levels of the corresponding site in primary miRNA precursors. However, for one miRNA, miR-376b-3p, editing was significantly higher in the mature form than in the primary precursor. We found miR-376b-3p maturation is negatively regulated by ADAR2 in an editing activity-independent manner, whereas ADAR1-mediated and ADAR2-mediated editing were observed to be competitive. In addition, the edited miR-376b-3p targets a different set of mRNAs than unedited miR-376b-3p, including 4-aminobutyrate aminotransferase, encoding the enzyme responsible for the catabolism of the neurotransmitter gamma aminobutyric acid (GABA). Expression of edited miR-376b-3p led to increased intracellular GABA levels as well as increased cell surface presentation of GABA type A receptors. Our results indicate that both editing and editing-independent effects modulate the expression of miR-376b-3p, with the potential to regulate GABAergic signaling in the brain.


Assuntos
MicroRNAs , Proteínas de Ligação a RNA , Ácido gama-Aminobutírico , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Mamíferos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neurotransmissores , Edição de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ácido gama-Aminobutírico/metabolismo
19.
J Biol Chem ; 298(9): 102267, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35850307

RESUMO

Members of the ADAR family of double-stranded RNA-binding proteins regulate one of the most abundant RNA modifications in humans, the deamination of adenosine to inosine. Several transcriptome-wide studies have been carried out to identify RNA targets of the active deaminases ADAR1 and ADAR2. However, our understanding of ADAR3, the brain-specific deaminase-deficient ADAR family member, is limited to a few transcripts. In this study, we identified over 3300 transcripts bound by ADAR3 and observed that binding of ADAR3 correlated with reduced editing of over 400 sites in the glioblastoma transcriptome. We further investigated the impact of ADAR3 on gene regulation of the transcript that encodes MAVS, an essential protein in the innate immune response pathway. We observed reduced editing in the MAVS 3' UTR in cells expressing increased ADAR3 or reduced ADAR1 suggesting ADAR3 acts as a negative regulator of ADAR1-mediated editing. While neither ADAR1 knockdown or ADAR3 overexpression affected MAVS mRNA expression, we demonstrate increased ADAR3 expression resulted in upregulation of MAVS protein expression. In addition, we created a novel genetic mutant of ADAR3 that exhibited enhanced RNA binding and MAVS upregulation compared with wildtype ADAR3. Interestingly, this ADAR3 mutant no longer repressed RNA editing, suggesting ADAR3 has a unique regulatory role beyond altering editing levels. Altogether, this study provides the first global view of ADAR3-bound RNAs in glioblastoma cells and identifies both a role for ADAR3 in repressing ADAR1-mediated editing and an RNA-binding dependent function of ADAR3 in regulating MAVS expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Adenosina Desaminase , RNA de Cadeia Dupla , Proteínas de Ligação a RNA , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Glioblastoma/genética , Humanos , Imunidade Inata , Inosina/genética , Ligação Proteica , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
20.
BMC Genomics ; 24(1): 685, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968596

RESUMO

BACKGROUND: RNA editing is a process that increases transcriptome diversity, often through Adenosine Deaminases Acting on RNA (ADARs) that catalyze the deamination of adenosine to inosine. ADAR editing plays an important role in regulating brain function and immune activation, and is dynamically regulated during brain development. Additionally, the ADAR1 p150 isoform is induced by interferons in viral infection and plays a role in antiviral immune response. However, the question of how virus-induced ADAR expression affects host transcriptome editing remains largely unanswered. This question is particularly relevant in the context of congenital infections, given the dynamic regulation of ADAR editing during brain development, the importance of this editing for brain function, and subsequent neurological symptoms of such infections, including microcephaly, sensory issues, and other neurodevelopmental abnormalities. Here, we begin to address this question, examining ADAR expression in publicly available datasets of congenital infections of human cytomegalovirus (HCMV) microarray expression data, as well as mouse cytomegalovirus (MCMV) and mouse/ human induced pluripotent neuroprogenitor stem cell (hiNPC) Zika virus (ZIKV) RNA-seq data. RESULTS: We found that in all three datasets, ADAR1 was overexpressed in infected samples compared to uninfected samples. In the RNA-seq datasets, editing rates were also analyzed. In all mouse infections cases, the number of editing sites was significantly increased in infected samples, albeit this was not the case for hiNPC ZIKV samples. Mouse ZIKV samples showed altered editing of well-established protein-recoding sites such as Gria3, Grik5, and Nova1, as well as editing sites that may impact miRNA binding. CONCLUSIONS: Our findings provide evidence for changes in ADAR expression and subsequent dysregulation of ADAR editing of host transcriptomes in congenital infections. These changes in editing patterns of key neural genes have potential significance in the development of neurological symptoms, thus contributing to neurodevelopmental abnormalities. Further experiments should be performed to explore the full range of editing changes that occur in different congenital infections, and to confirm the specific functional consequences of these editing changes.


Assuntos
Infecções por Citomegalovirus , Infecção por Zika virus , Zika virus , Animais , Humanos , Camundongos , Edição de RNA , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Adenosina/metabolismo , Inosina/genética , Inosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA