RESUMO
Although it is well established that the SARS-CoV-2 spike glycoprotein binds to the host cell ACE2 receptor to initiate infection, far less is known about the tissue tropism and host cell susceptibility to the virus. Differential expression across different cell types of heparan sulfate (HS) proteoglycans, with variably sulfated glycosaminoglycans (GAGs), and their synergistic interactions with host and viral N-glycans may contribute to tissue tropism and host cell susceptibility. Nevertheless, their contribution remains unclear since HS and N-glycans evade experimental characterization. We, therefore, carried out microsecond-long all-atom molecular dynamics simulations, followed by random acceleration molecular dynamics simulations, of the fully glycosylated spike:ACE2 complex with and without highly sulfated GAG chains bound. By considering the model GAGs as surrogates for the highly sulfated HS expressed in lung cells, we identified key cell entry mechanisms of spike SARS-CoV-2. We find that HS promotes structural and energetic stabilization of the active conformation of the spike receptor-binding domain (RBD) and reorientation of ACE2 toward the N-terminal domain in the same spike subunit as the RBD. Spike and ACE2 N-glycans exert synergistic effects, promoting better packing, strengthening the protein:protein interaction, and prolonging the residence time of the complex. ACE2 and HS binding trigger rearrangement of the S2' functional protease cleavage site through allosteric interdomain communication. These results thus show that HS has a multifaceted role in facilitating SARS-CoV-2 infection, and they provide a mechanistic basis for the development of GAG derivatives with anti-SARS-CoV-2 potential.
Assuntos
Enzima de Conversão de Angiotensina 2 , Heparitina Sulfato , Simulação de Dinâmica Molecular , Polissacarídeos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Humanos , Heparitina Sulfato/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/química , COVID-19/metabolismo , COVID-19/virologia , Internalização do Vírus , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/químicaRESUMO
At the beginning of the 2019 coronavirus disease (COVID-19) pandemic, airway allergic diseases such as asthma and allergic rhinitis (AR) were considered as risk factors for COVID-19, as they would aggravate symptoms. With further research, more and more literature has shown that airway allergic disease may not be a high-risk factor, but may be a protective factor for COVID-19 infection, which is closely related to its low-level expression of the ACE2 receptor and the complex cytokines network as underlying molecular regulatory mechanisms. In addition, steroid hormones and age factors could not be ignored. In this review, we have summarized some current evidence on the relationship between COVID-19 and allergic rhinitis to highlight the underlying mechanisms of COVID-19 infection and provide novel insights for its prevention and treatment. The key findings show that allergic rhinitis and its related molecular mechanisms may have a protective effect against COVID-19 infection.
RESUMO
SARS-Cov-2, the virus causing COVID-19, penetrates host target cells via the receptor of angiotensin-converting enzyme 2 (ACE2). Disrupting the virus interaction with ACE2 affords a plausible mechanism for prevention of cell penetration and inhibiting dissemination of the virus. Our studies demonstrate that ACE2 interaction with the receptor binding domain of SARS-Cov-2 spike protein (RBD) can be impaired by modulating the α7 nicotinic acetylcholine receptor (α7 nAChR) contiguous with ACE2. U373 cells of human astrocytoma origin were shown to bind both ACE2-specific antibody and recombinant RBD in Cell-ELISA. ACE2 was found to interact with α7 nAChR in U373 cell lysates studied by Sandwich ELISA. Our studies demonstrate that inhibition of RBD binding to ACE2-expressing U373 cells were defined with α7 nAChR agonists choline and PNU282987, but not a competitive antagonist methyllicaconitine (MLA). Additionally, the type 2 positive allosteric modulator (PAM2) PNU120596 and hydroxyurea (HU) also inhibited the binding. Our studies demonstrate that activation of α7 AChRs has efficacy in inhibiting the SARS-Cov-2 interaction with the ACE2 receptor and in such a way can prevent virus target cell penetration. These studies also help to clarify the consistent efficacy and positive outcomes for utilizing HU in treating COVID-19.
Assuntos
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa7 , Humanos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19 , Ligação Proteica , Receptores Nicotínicos/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/químicaRESUMO
Self-assembling nanoparticles (saNP) and nanofibers were found in the recombinant coronavirus SARS-CoV-2 S1, S2, RBD and N proteins purified by affinity chromatography using Ni Sepharose. Scanning electron (SEM), atomic force (AFM) microscopy on mica or graphite surface and in liquid as well as dynamic light scattering (DLS) revealed nanostructures of various sizes. AFM in liquid cell without drying on the surface showed mean height of S1 saNP 80.03 nm, polydispersity index (PDI) 0.006; for S2 saNP mean height 93.32 nm, PDI = 0.008; for N saNP mean height 16.71 nm, PDI = 0.99; for RBD saNP mean height 16.25 nm, PDI = 0.55. Ratios between the height and radius of each saNP in the range 0.1-0.5 suggested solid protein NP but not vesicles with internal empty spaces. The solid but not empty structures of the protein saNP were also confirmed by STEM after treatment of saNP with the standard contrasting agent uranyl acetate. The saNP remained stable after multiple freeze-thaw cycles in water and hyperosmotic solutions for 2 years at -20 °C. Receptor-mediated penetration of the SARS-CoV-2 S1 and RBD saNP in the African green mokey kidney Vero cells with the specific receptors for ß-coronavirus reproduction was more efficient compared to unspecific endocytosis into MDCK cells without the specific receptors. Amyloid-like structures were revealed in the SARS-CoV-2 S1, S2, RBD and N saNP by means of their interaction with Thioflavin T and Congo Red dyes. Taken together, spontaneous formation of the amyloid-like self-assembling nanostructures due to the internal affinity of the SARS-CoV-2 virion proteins might induce proteinopathy in patients, including conformational neurodegenerative diseases, change stability of vaccines and diagnostic systems.
Assuntos
COVID-19 , Nanoestruturas , Animais , Humanos , Chlorocebus aethiops , SARS-CoV-2 , Células Vero , Proteínas Recombinantes , Amiloide , Proteínas AmiloidogênicasRESUMO
According to the data from the World Health Organization, about 800 million of the world population had contracted coronavirus infection caused by SARS-CoV-2 by mid-2023. Properties of this virus have allowed it to circulate in the human population for a long time, evolving defense mechanisms against the host immune system. Severity of the disease depends largely on the degree of activation of the systemic immune response, including overstimulation of macrophages and monocytes, cytokine production, and triggering of adaptive T- and B-cell responses, while SARS-CoV-2 evades the immune system actions. In this review, we discuss immune responses triggered in response to the SARS-CoV-2 virus entry into the cell and malfunctions of the immune system that lead to the development of severe disease.
Assuntos
COVID-19 , Humanos , SARS-CoV-2RESUMO
Epigenetic changes have long-lasting impacts, which influence the epigenome and are maintained during cell division. Thus, human genome changes have required a very long timescale to become a major contributor to the current obesity pandemic. Whereas bidirectional effects of coronavirus disease 2019 (COVID-19) and obesity pandemics have given the opportunity to explore, how the viral microribonucleic acids (miRNAs) use the human's transcriptional machinery that regulate gene expression at a posttranscriptional level. Obesity and its related comorbidity, type 2 diabetes (T2D), and new-onset diabetes due to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) are additional risk factors, which increase the severity of COVID-19 and its related mortality. The higher mortality rate of these patients is dependent on severe cytokine storm, which is the sum of the additional cytokine production by concomitant comorbidities and own cytokine synthesis of COVID-19. Patients with obesity facilitate the SARS-CoV-2 entry to host cell via increasing the host's cell receptor expression and modifying the host cell proteases. After entering the host cells, the SARS-CoV-2 genome directly functions as a messenger ribonucleic acid (mRNA) and encodes a set of nonstructural proteins via processing by the own proteases, main protease (Mpro), and papain-like protease (PLpro) to initiate viral genome replication and transcription. Following viral invasion, SARS-CoV-2 infection reduces insulin secretion via either inducing ß-cell apoptosis or reducing intensity of angiotensin-converting enzyme 2 (ACE2) receptors and leads to new-onset diabetes. Since both T2D and severity of COVID-19 are associated with the increased serum levels of pro-inflammatory cytokines, high glucose levels in T2D aggravate SARS-CoV-2 infection. Elevated neopterin (NPT) value due to persistent interferon gamma (IFN-γ)-mediated monocyte-macrophage activation is an indicator of hyperactivated pro-inflammatory phenotype M1 macrophages. Thus, NPT could be a reliable biomarker for the simultaneously occurring COVID-19-, obesity- and T2D-induced cytokine storm. While host miRNAs attack viral RNAs, viral miRNAs target host transcripts. Eventually, the expression rate and type of miRNAs also are different in COVID-19 patients with different viral loads. It is concluded that specific miRNA signatures in macrophage activation phase may provide an opportunity to become aware of the severity of COVID-19 in patients with obesity and obesity-related T2D.
Assuntos
COVID-19 , Síndrome de Ativação Macrofágica , Obesidade , SARS-CoV-2 , Humanos , COVID-19/virologia , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/complicações , Obesidade/complicações , Obesidade/metabolismo , Obesidade/epidemiologia , Obesidade/virologia , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , Síndrome de Ativação Macrofágica/virologia , Síndrome de Ativação Macrofágica/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/virologia , Diabetes Mellitus Tipo 2/metabolismo , Pandemias , MicroRNAs/genética , MicroRNAs/metabolismo , Citocinas/metabolismo , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/virologiaRESUMO
Binding of the spike protein of SARS-CoV-2 to the human angiotensin-converting enzyme 2 (ACE2) receptor triggers translocation of the virus into cells. Both the ACE2 receptor and the spike protein are heavily glycosylated, including at sites near their binding interface. We built fully glycosylated models of the ACE2 receptor bound to the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Using atomistic molecular dynamics (MD) simulations, we found that the glycosylation of the human ACE2 receptor contributes substantially to the binding of the virus. Interestingly, the glycans at two glycosylation sites, N90 and N322, have opposite effects on spike protein binding. The glycan at the N90 site partly covers the binding interface of the spike RBD. Therefore, this glycan can interfere with the binding of the spike protein and protect against docking of the virus to the cell. By contrast, the glycan at the N322 site interacts tightly with the RBD of the ACE2-bound spike protein and strengthens the complex. Remarkably, the N322 glycan binds to a conserved region of the spike protein identified previously as a cryptic epitope for a neutralizing antibody. By mapping the glycan binding sites, our MD simulations aid in the targeted development of neutralizing antibodies and SARS-CoV-2 fusion inhibitors.
Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicosilação , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , SARS-CoV-2/metabolismo , Internalização do VírusRESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has brought new insights into the immunologic intricacies of asthma. In this review, we discuss the epidemiology of asthma in patients infected with SARS-CoV-2 and the risk of severe infection. Type 2 inflammation had an overall protective effect against SARS-CoV-2 infection by various mechanisms summarized in this review. Asthma, intranasal, and inhaled corticosteroids decreased the angiotensin-converting enzyme 2 receptor, an important receptor for SARS-CoV-2 entry into host cells. We summarize the nuances of the treatment of type 2 inflammation despite its underlying protective effects. Research to date has shown that patients on various allergen immunotherapies and biologics do benefit from being vaccinated.
Assuntos
Asma , COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Peptidil Dipeptidase A , Asma/epidemiologia , InflamaçãoRESUMO
Olfactory perception is an important physiological function for human well-being and health. Loss of olfaction, or anosmia, caused by viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has received considerable attention, especially in persistent cases that take a long time to recover. This review discusses the integration of different components of the olfactory epithelium to serve as a structural and functional unit and explores how they are affected during viral infections, leading to the development of olfactory dysfunction. The review mainly focused on the role of receptors mediating the disruption of olfactory signal transduction pathways such as angiotensin converting enzyme 2 (ACE2), transmembrane protease serine type 2 (TMPRSS2), neuropilin 1 (NRP1), basigin (CD147), olfactory, transient receptor potential vanilloid 1 (TRPV1), purinergic, and interferon gamma receptors. Furthermore, the compromised function of the epithelial sodium channel (ENaC) induced by SARS-CoV-2 infection and its contribution to olfactory dysfunction are also discussed. Collectively, this review provides fundamental information about the many types of receptors that may modulate olfaction and participate in olfactory dysfunction. It will help to understand the underlying pathophysiology of virus-induced anosmia, which may help in finding and designing effective therapies targeting molecules involved in viral invasion and olfaction. To the best of our knowledge, this is the only review that covered all the receptors potentially involved in, or mediating, the disruption of olfactory signal transduction pathways during COVID-19 infection. This wide and complex spectrum of receptors that mediates the pathophysiology of olfactory dysfunction reflects the many ways in which anosmia can be therapeutically managed.
Assuntos
Anosmia , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/metabolismo , COVID-19/complicações , COVID-19/fisiopatologia , COVID-19/virologia , Anosmia/fisiopatologia , Anosmia/etiologia , Anosmia/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Mucosa Olfatória/metabolismo , Mucosa Olfatória/virologia , Transdução de Sinais , Serina Endopeptidases/metabolismo , Neuropilina-1/metabolismo , Basigina/metabolismo , Canais de Cátion TRPV/metabolismoRESUMO
The contagiousness of SARS-CoV-2 ß-coronavirus is determined by the virus-receptor electrostatic association of its positively charged spike (S) protein with the negatively charged angiotensin converting enzyme-2 (ACE2 receptor) of the epithelial cells. If some mutations occur, the electrostatic potential on the surface of the receptor-binding domain (RBD) could be altered, and the S-ACE2 association could become stronger or weaker. The aim of the current research is to investigate whether point mutations can noticeably alter the electrostatic potential on the RBD and the 3D stability of the S1-subunit of the S-protein. For this purpose, 15 mutants with different hydrophilicity and electric charge (positive, negative, or uncharged) of the substituted and substituting amino acid residues, located on the RBD at the S1-ACE2 interface, are selected, and the 3D structure of the S1-subunit is reconstructed on the base of the crystallographic structure of the S-protein of the wild-type strain and the amino acid sequence of the unfolded polypeptide chain of the mutants. Then, the Gibbs free energy of folding, isoelectric point, and pH-dependent surface electrostatic potential of the S1-subunit are computed using programs for protein electrostatics. The results show alterations in the local electrostatic potential in the vicinity of the mutant amino acid residue, which can influence the S-ACE2 association. This approach allows prediction of the relative infectivity, transmissibility, and contagiousness (at equal social immune status) of new SARS-CoV-2 mutants by reconstruction of the 3D structure of the S1-subunit and calculation of the surface electrostatic potential.
Assuntos
COVID-19 , Mutação Puntual , Glicoproteína da Espícula de Coronavírus , Humanos , Aminoácidos , Enzima de Conversão de Angiotensina 2 , Mutação , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/fisiologia , Eletricidade EstáticaRESUMO
Recently, a global outbreak of COVID-19 has rapidly spread to various national regions. As the number of COVID-19 patients has increased, some of those infected with SARS-CoV-2 have developed a variety of psychiatric symptoms, including depression, cognitive impairment, and fatigue. A distinct storm of inflammatory factors that contribute to the initial disease but also a persistent post-acute phase syndrome has been reported in patients with COVID-19. Neuropsychological symptoms including depression, cognitive impairment, and fatigue are closely related to circulating and local (brain) inflammatory factors. Natural products are currently being examined for their ability to treat numerous complications caused by COVID-19. Among them, ginseng has anti-inflammatory, immune system stimulating, neuroendocrine modulating, and other effects, which may help improve psychiatric symptoms. This review summarizes the basic mechanisms of COVID-19 pneumonia, psychiatric symptoms following coronavirus infections, effects of ginseng on depression, restlessness, and other psychiatric symptoms associated with post-COVID syn-dromes, as well as possible mechanisms underlying these effects.
Assuntos
COVID-19 , Panax , Humanos , Depressão/tratamento farmacológico , COVID-19/complicações , SARS-CoV-2 , FadigaRESUMO
In comparison to previously known severe respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, the newly emerged Omicron (B.1.1.529) variant shows higher infectivity in humans. Exceptionally high infectivity of this variant raises concern of its possible transmission via other intermediate hosts. The SARS-CoV-2 infectivity is established via the association of spike (S) protein receptor binding domain (RBD) with host angiotensin I converting enzyme 2 (hACE2) receptor. In the course of this study, we investigated the interaction between Omicron S protein RBD with the ACE2 receptor of 143 mammalian hosts including human by protein-protein interaction analysis. The goal of this study was to forecast the likelihood that the virus may infect other mammalian species that coexist with or are close to humans in the household, rural, agricultural, or zoological environments. The Omicron RBD was found to interact with higher binding affinity with the ACE2 receptor of 122 mammalian hosts via different amino acid residues from the human ACE2 (hACE2). The rat (Rattus rattus) ACE2 was found to show the strongest interaction with Omicron RBD with a binding affinity of -1393.6 kcal/mol. These distinct strong binding affinity of RBD of Omicron with host ACE2 indicates a greater potential of new host transmissibility and infection via intermediate hosts. Though expected but the phylogenetic position of the mammalian species may not dictate the Omicron RBD binding to the host ACE2 receptor suggesting an involvement of multiple factors in guiding host divergence of the variant.
Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Transmissão de Doença Infecciosa , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Ratos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Mamíferos , Mutação , Filogenia , Ligação Proteica , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismoRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the acute respiratory disease coronavirus disease 2019 (COVID-19), which has resulted in millions of deaths globally. Here, we explored the mechanism of host cell entry of a luciferase-ZsGreen spike (SARS-CoV-2)-pseudotyped lentivirus using zebrafish embryos/larvae as an in vivo model. Successful pseudovirus entry was demonstrated via the expression of the luciferase (luc) gene, which was validated by reverse transcription-PCR (RT-PCR). Treatment of larvae with chloroquine (a broad-spectrum viral inhibitor that blocks membrane fusion) or bafilomycin A1 (a specific inhibitor of vacuolar proton ATPases, which blocks endolysosomal trafficking) significantly reduced luc expression, indicating the possible involvement of the endolysosomal system in the viral entry mechanism. The pharmacological inhibition of two-pore channel (TPC) activity or use of the tpcn2dhkz1a mutant zebrafish line also led to diminished luc expression. The localized expression of ACE2 and TPC2 in the anterior neuromasts and the forming olfactory organs was demonstrated, and the occurrence of endocytosis in both locations was confirmed. Together, our data indicate that zebrafish embryos/larvae are a viable and tractable model to explore the mechanism of SARS-CoV-2 host cell entry, that the peripheral sense organs are a likely site for viral host cell entry, and that TPC2 plays a key role in the translocation of the virus through the endolysosomal system. IMPORTANCE Despite the development of effective vaccines to combat the COVID-19 pandemic, which help prevent the most life-threatening symptoms, full protection cannot be guaranteed, especially with the emergence of new viral variants. Moreover, some resistance to vaccination remains in certain age groups and cultures. As such, there is an urgent need for the development of new strategies and therapies to help combat this deadly disease. Here, we provide compelling evidence that the peripheral sensory organs of zebrafish possess several key components required for SARS-CoV-2 host cell entry. The nearly transparent larvae provide a most amenable complementary platform to investigate the key steps of viral entry into host cells, as well as its spread through the tissues and organs. This will help in the identification of key viral entry steps for therapeutic intervention, provide an inexpensive model for screening novel antiviral compounds, and assist in the development of new and more effective vaccines.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , COVID-19/transmissão , Ligação Proteica , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Peixe-Zebra , Modelos Animais de Doenças , Virologia/métodos , LarvaRESUMO
Interaction of SARS-CoV-2 spike glycoprotein with the ACE2 cell receptor is very crucial for virus attachment to human cells. Selected mutations in SARS-CoV-2 S-protein are reported to strengthen its binding affinity to mammalian ACE2. The N501T mutation in SARS-CoV-2-CTD furnishes better support to hotspot 353 in comparison with SARS-CoV and shows higher affinity for receptor binding. Recombination analysis exhibited higher recombination events in SARS-CoV-2 strains, irrespective of their geographical origin or hosts. Investigation further supports a common origin among SARS-CoV-2 and its predecessors, SARS-CoV and bat-SARS-like-CoV. The recombination events suggest a constant exchange of genetic material among the co-infecting viruses in possible reservoirs and human hosts before SARS-CoV-2 emerged. Furthermore, a comprehensive analysis of codon usage bias (CUB) in SARS-CoV-2 revealed significant CUB among the S-genes of different beta-coronaviruses governed majorly by natural selection and mutation pressure. Various indices of codon usage of S-genes helped in quantifying its adaptability in other animal hosts. These findings might help in identifying potential experimental animal models for investigating pathogenicity for drugs and vaccine development experiments.
Assuntos
Evolução Biológica , Uso do Códon , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Humanos , Modelos Animais , Mutação , RNA de Transferência/genética , Glicoproteína da Espícula de Coronavírus/metabolismoRESUMO
Proteomics studies allow for the determination of the identity, amount, and interactions of proteins under specific conditions that allow the biological state of an organism to ultimately change. These conditions can be either beneficial or detrimental. Diseases are due to detrimental changes caused by either protein overexpression or underexpression caused by as a result of a mutation or posttranslational modifications (PTM), among other factors. Identification of disease biomarkers through proteomics can be potentially used as clinical information for diagnostics. Common biomarkers to look for include PTM. For example, aberrant glycosylation of proteins is a common marker and will be a focus of interest in this review. A common way to analyze glycoproteins is by glycoproteomics involving mass spectrometry. Due to factors such as micro- and macroheterogeneity which result in a lower abundance of each version of a glycoprotein, it is difficult to obtain meaningful results unless rigorous sample preparation procedures are in place. Microheterogeneity represents the diversity of glycans at a single site, whereas macroheterogeneity depicts glycosylation levels at each site of a protein. Enrichment and derivatization of glycopeptides help to overcome these limitations. Over the time range of 2016 to 2020, several methods have been proposed in the literature and have contributed to drastically improve the outcome of glycosylation analysis, as presented in the sampling surveyed in this review. As a current topic in 2020, glycoproteins carried by pathogens can also cause disease and this is seen with SARS CoV2, causing the COVID-19 pandemic. This review will discuss glycoproteomic studies of the spike glycoprotein and interacting proteins such as the ACE2 receptor.
Assuntos
COVID-19 , Glicopeptídeos , Glicopeptídeos/análise , Glicoproteínas/análise , Glicosilação , Humanos , Espectrometria de Massas/métodos , PandemiasRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) pandemic and continues to pose a threat to global public health through genetic mutation. In this study, we have found that an angiotensin-converting enzyme 2-specific monoclonal antibody at low concentration was able to enhance SARS-CoV-2 infection and growth in cell culture. Strikingly, it promotes SARS-CoV-2 plaque formation, resulting in accurate titration of different SARS-CoV-2 variants, particularly the newly emerged Omicron variants, which otherwise cannot be determined by standard plaque assays. Quantification of infectious titers of the newly emerged variants will facilitate the development and evaluation of vaccines and antiviral drugs against SARS-CoV-2.
Assuntos
COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2 , Anticorpos Monoclonais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genéticaRESUMO
The coronavirus disease 2019 virus outbreak continues worldwide, with many variants emerging, some of which are considered variants of concern (VOCs). The WHO designated Omicron as a VOC and assigned it under variant B.1.1.529. Here, we used computational studies to examine the VOCs, including Omicron subvariants, and one variant of interest. Here we found that the binding affinity of human receptor angiotensin-converting enzyme 2 (hACE2) and receptor-binding domain (RBDs) increased in the order of wild type (Wuhan-strain) < Beta < Alpha < OmicronBA.5 < Gamma < Delta < Omicron BA.2.75 < BA.1 < BA.3 < BA.2. Interactions between docked complexes revealed that the RBD residue positions like 452, 478, 493, 498, 501, and 505 are crucial in creating strong interactions with hACE2. Omicron BA.2 shows the highest binding capacity to the hACE2 receptor among all the mutant complexes. The BA.5's L452R, F486V, and T478K mutation significantly impact the interaction network in the BA.5 RBD-hACE2 interface. Here for the first time, we report the His505, an active residue on the RBD forming a salt bridge in the BA.2, leading to increased mutation stability. When the active RBD residues are mutated, binding affinity and intermolecular interactions increase across all mutant complexes. By examining the differences in different variants, this study may provide a solid foundation for structure-based drug design for newly emerging variants.
Assuntos
COVID-19 , Humanos , Surtos de Doenças , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genéticaRESUMO
A novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2) is causing the global coronavirus disease 2019 (COVID-19) pandemic. Understanding how SARS-CoV-2 enters human cells is a high priority for deciphering its mystery and curbing its spread. A virus surface spike protein mediates SARS-CoV-2 entry into cells. To fulfill its function, SARS-CoV-2 spike binds to its receptor human ACE2 (hACE2) through its receptor-binding domain (RBD) and is proteolytically activated by human proteases. Here we investigated receptor binding and protease activation of SARS-CoV-2 spike using biochemical and pseudovirus entry assays. Our findings have identified key cell entry mechanisms of SARS-CoV-2. First, SARS-CoV-2 RBD has higher hACE2 binding affinity than SARS-CoV RBD, supporting efficient cell entry. Second, paradoxically, the hACE2 binding affinity of the entire SARS-CoV-2 spike is comparable to or lower than that of SARS-CoV spike, suggesting that SARS-CoV-2 RBD, albeit more potent, is less exposed than SARS-CoV RBD. Third, unlike SARS-CoV, cell entry of SARS-CoV-2 is preactivated by proprotein convertase furin, reducing its dependence on target cell proteases for entry. The high hACE2 binding affinity of the RBD, furin preactivation of the spike, and hidden RBD in the spike potentially allow SARS-CoV-2 to maintain efficient cell entry while evading immune surveillance. These features may contribute to the wide spread of the virus. Successful intervention strategies must target both the potency of SARS-CoV-2 and its evasiveness.
Assuntos
Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Internalização do Vírus , Enzima de Conversão de Angiotensina 2 , Linhagem Celular , Humanos , Evasão da Resposta Imune , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Domínios Proteicos , Receptores de Coronavírus , Receptores Virais/química , Receptores Virais/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Ativação ViralRESUMO
Lung surfactant is a complex mixture of phospholipids and surfactant proteins that is produced in alveolar type 2 cells. It prevents lung collapse by reducing surface tension and is involved in innate immunity. Exogenous animal-derived and, more recently, synthetic lung surfactant has shown clinical efficacy in surfactant-deficient premature infants and in critically ill patients with acute respiratory distress syndrome (ARDS), such as those with severe COVID-19 disease. COVID-19 pneumonia is initiated by the binding of the viral receptor-binding domain (RBD) of SARS-CoV-2 to the cellular receptor angiotensin-converting enzyme 2 (ACE2). Inflammation and tissue damage then lead to loss and dysfunction of surface activity that can be relieved by treatment with an exogenous lung surfactant. Surfactant protein B (SP-B) is pivotal for surfactant activity and has anti-inflammatory effects. Here, we study the binding of two synthetic SP-B peptide mimics, Super Mini-B (SMB) and B-YL, to a recombinant human ACE2 receptor protein construct using molecular docking and surface plasmon resonance (SPR) to evaluate their potential as antiviral drugs. The SPR measurements confirmed that both the SMB and B-YL peptides bind to the rhACE2 receptor with affinities like that of the viral RBD-ACE2 complex. These findings suggest that synthetic lung surfactant peptide mimics can act as competitive inhibitors of the binding of viral RBD to the ACE2 receptor.
Assuntos
COVID-19 , Surfactantes Pulmonares , Animais , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/química , Simulação de Acoplamento Molecular , Peptídeos , Proteínas Associadas a Surfactantes Pulmonares , Ligação Proteica , Receptores Virais , Surfactantes Pulmonares/farmacologia , TensoativosRESUMO
The COVID-19 pandemic has brought a serious threat to human life safety worldwide. SARS-CoV-2 virus mainly binds to the target cell surface receptor ACE2 (Angiotensin-converting enzyme 2 ) through the S protein expressed on the surface of the virus, resulting in infection of target cells. During this infection process, the target cell ACE2 receptor plays a very important mediating role. In this paper, a delay differential equation model containing the mediated effect of target cell receptor is established according to the mechanism of SARS-CoV-2 virus invasion of target cells, and the global stability of the infection-free equilibrium and the infected equilibrium of the model is obtained by using the basic reproduction number â 0 and constructing the appropriate Lyapunov functional. The expression of the basic reproduction number â 0 intuitively gives the dependence on the expression ratio of the target cell surface ACE2 receptor, which is helpful for the understanding of the mechanism of SARS-CoV-2 virus infection.