Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Cell ; 172(3): 578-589.e17, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29373830

RESUMO

KRASG12C was recently identified to be potentially druggable by allele-specific covalent targeting of Cys-12 in vicinity to an inducible allosteric switch II pocket (S-IIP). Success of this approach requires active cycling of KRASG12C between its active-GTP and inactive-GDP conformations as accessibility of the S-IIP is restricted only to the GDP-bound state. This strategy proved feasible for inhibiting mutant KRAS in vitro; however, it is uncertain whether this approach would translate to in vivo. Here, we describe structure-based design and identification of ARS-1620, a covalent compound with high potency and selectivity for KRASG12C. ARS-1620 achieves rapid and sustained in vivo target occupancy to induce tumor regression. We use ARS-1620 to dissect oncogenic KRAS dependency and demonstrate that monolayer culture formats significantly underestimate KRAS dependency in vivo. This study provides in vivo evidence that mutant KRAS can be selectively targeted and reveals ARS-1620 as representing a new generation of KRASG12C-specific inhibitors with promising therapeutic potential.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Quinazolinas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Células HCT116 , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Mutação , Piperazinas/química , Piperazinas/uso terapêutico , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinazolinas/química , Quinazolinas/uso terapêutico
2.
Mol Cell ; 83(13): 2240-2257.e6, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37329882

RESUMO

The RNA-binding ARS2 protein is centrally involved in both early RNA polymerase II (RNAPII) transcription termination and transcript decay. Despite its essential nature, the mechanisms by which ARS2 enacts these functions have remained unclear. Here, we show that a conserved basic domain of ARS2 binds a corresponding acidic-rich, short linear motif (SLiM) in the transcription restriction factor ZC3H4. This interaction recruits ZC3H4 to chromatin to elicit RNAPII termination, independent of other early termination pathways defined by the cleavage and polyadenylation (CPA) and Integrator (INT) complexes. We find that ZC3H4, in turn, forms a direct connection to the nuclear exosome targeting (NEXT) complex, hereby facilitating rapid degradation of the nascent RNA. Hence, ARS2 instructs the coupled transcription termination and degradation of the transcript onto which it is bound. This contrasts with ARS2 function at CPA-instructed termination sites where the protein exclusively partakes in RNA suppression via post-transcriptional decay.


Assuntos
Proteínas Nucleares , Transcrição Gênica , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA
3.
Mol Cell ; 83(13): 2222-2239.e5, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37329883

RESUMO

The transcriptional termination of unstable non-coding RNAs (ncRNAs) is poorly understood compared to coding transcripts. We recently identified ZC3H4-WDR82 ("restrictor") as restricting human ncRNA transcription, but how it does this is unknown. Here, we show that ZC3H4 additionally associates with ARS2 and the nuclear exosome targeting complex. The domains of ZC3H4 that contact ARS2 and WDR82 are required for ncRNA restriction, suggesting their presence in a functional complex. Consistently, ZC3H4, WDR82, and ARS2 co-transcriptionally control an overlapping population of ncRNAs. ZC3H4 is proximal to the negative elongation factor, PNUTS, which we show enables restrictor function and is required to terminate the transcription of all major RNA polymerase II transcript classes. In contrast to short ncRNAs, longer protein-coding transcription is supported by U1 snRNA, which shields transcripts from restrictor and PNUTS at hundreds of genes. These data provide important insights into the mechanism and control of transcription by restrictor and PNUTS.


Assuntos
RNA Polimerase II , Transcrição Gênica , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Núcleo Celular/metabolismo , RNA não Traduzido/genética , Proteínas Cromossômicas não Histona/genética
4.
Neurobiol Dis ; 195: 106501, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583640

RESUMO

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.


Assuntos
Transporte Axonal , Fator Neurotrófico Derivado do Encéfalo , Doença de Charcot-Marie-Tooth , Modelos Animais de Doenças , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Camundongos , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo , Humanos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Receptor trkB/metabolismo , Receptor trkB/genética , Mutação
5.
Cell Physiol Biochem ; 58(4): 418-430, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39172137

RESUMO

BACKGROUND/AIMS: After 9/11, multiple government agencies instituted programs aimed at developing medical radiation countermeasures (MRCs) for two syndromes lethal within weeks of a limited nuclear attack; the hematopoietic-acute radiation syndrome (H-ARS) and the higher-dose gastrointestinal-acute radiation syndrome (GI-ARS). While re-purposing drugs that enhance marrow repopulation treats H-ARS, no mitigator protects GI tract. METHODS: We recently reported anti-ceramide 6B5 single-chain variable fragment (scFv) pre-treatment abrogates ongoing small intestinal endothelial apoptosis to rescue Lgr5+ stem cells, preventing GI-ARS lethality in C57B/L6J mice. Here, with US Department of Defense support, we provide evidence that humanized anti-ceramide scFv (CX-01) is a promising prophylactic MRC for first responders, who risk exposure upon entering a radiation-contaminated site. RESULTS: CX-01, when delivered up to 90 min before irradiation, is highly-effective in preventing small intestinal endothelial apoptosis in mice and lethality in both sexes. Unexpectedly, females require an ~2-fold higher CX-01 dose than males for full protection. CX-01 is effective subcutaneously and intramuscularly, a property critical for battlefield use. Increasing the maximally-effective dose 5-fold does not extend duration of bioeffectiveness. CONCLUSION: While CX-01 prevents GI-ARS lethality, structural modification to extend half-life may be necessary to optimize first responder prophylaxis.


Assuntos
Apoptose , Ceramidas , Camundongos Endogâmicos C57BL , Anticorpos de Cadeia Única , Animais , Anticorpos de Cadeia Única/imunologia , Feminino , Camundongos , Masculino , Ceramidas/metabolismo , Apoptose/efeitos dos fármacos , Síndrome Aguda da Radiação/patologia , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/prevenção & controle , Humanos , Armas Nucleares , Protetores contra Radiação/farmacologia , Protetores contra Radiação/uso terapêutico , Intestino Delgado/patologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/efeitos da radiação
6.
Microb Cell Fact ; 23(1): 116, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643119

RESUMO

BACKGROUND: Most recombinant Komagataella phaffii (Pichia pastoris) strains for protein production are generated by genomic integration of expression cassettes. The clonal variability in gene copy numbers, integration loci and consequently product titers limit the aptitude for high throughput applications in drug discovery, enzyme engineering or most comparative analyses of genetic elements such as promoters or secretion signals. Circular episomal plasmids with an autonomously replicating sequence (ARS), an alternative which would alleviate some of these limitations, are inherently unstable in K. phaffii. Permanent selection pressure, mostly enabled by antibiotic resistance or auxotrophy markers, is crucial for plasmid maintenance and hardly scalable for production. The establishment and use of extrachromosomal ARS plasmids with key genes of the glycerol metabolism (glycerol kinase 1, GUT1, and triosephosphate isomerase 1, TPI1) as selection markers was investigated to obtain a system with high transformation rates that can be directly used for scalable production processes in lab scale bioreactors. RESULTS: In micro-scale deep-well plate experiments, ARS plasmids employing the Ashbya gossypii TEF1 (transcription elongation factor 1) promoter to regulate transcription of the marker gene were found to deliver high transformation efficiencies and the best performances with the reporter protein (CalB, lipase B of Candida antarctica) for both, the GUT1- and TPI1-based, marker systems. The GUT1 marker-bearing strain surpassed the reference strain with integrated expression cassette by 46% upon re-evaluation in shake flask cultures regarding CalB production, while the TPI1 system was slightly less productive compared to the control. In 5 L bioreactor methanol-free fed-batch cultivations, the episomal production system employing the GUT1 marker led to 100% increased CalB activity in the culture supernatant compared to integration construct. CONCLUSIONS: For the first time, a scalable and methanol-independent expression system for recombinant protein production for K. phaffii using episomal expression vectors was demonstrated. Expression of the GUT1 selection marker gene of the new ARS plasmids was refined by employing the TEF1 promoter of A. gossypii. Additionally, the antibiotic-free marker toolbox for K. phaffii was expanded by the TPI1 marker system, which proved to be similarly suited for the use in episomal plasmids as well as integrative expression constructs for the purpose of recombinant protein production.


Assuntos
Pichia , Saccharomycetales , Pichia/metabolismo , Carbono/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Proteínas Recombinantes , Plasmídeos/genética
7.
Appl Microbiol Biotechnol ; 108(1): 128, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229335

RESUMO

The Gemmatimonadota phylum has been widely detected in diverse natural environments, yet their specific ecological roles in many habitats remain poorly investigated. Similarly, the Candidatus ARS69 phylum has been identified only in a few habitats, and literature on their metabolic functions is relatively scarce. In the present study, we investigated the ecological significance of phyla Ca. ARS69 and Gemmatimonadota in the Arctic glacier foreland (GF) ecosystems through genome-resolved metagenomics. We have reconstructed the first high-quality metagenome-assembled genome (MAG) belonging to Ca. ARS69 and 12 other MAGs belonging to phylum Gemmatimonadota from the three different Arctic GF samples. We further elucidated these two groups phylogenetic lineage and their metabolic function through phylogenomic and pangenomic analysis. The analysis showed that all the reconstructed MAGs potentially belonged to novel species. The MAGs belonged to Ca. ARS69 consist about 8296 gene clusters, of which only about 8% of single-copy core genes (n = 980) were shared among them. The study also revealed the potential ecological role of Ca. ARS69 is associated with carbon fixation, denitrification, sulfite oxidation, and reduction biochemical processes in the GF ecosystems. Similarly, the study demonstrates the widespread distribution of different classes of Gemmatimonadota across wide ranges of ecosystems and their metabolic functions, including in the polar region. KEY POINTS: • Glacier foreland ecosystems act as a natural laboratory to study microbial community structure. • We have reconstructed 13 metagenome-assembled genomes from the soil samples. • All the reconstructed MAGs belonged to novel species with different metabolic processes. • Ca. ARS69 and Gemmatimonadota MAGs were found to participate in carbon fixation and denitrification processes.


Assuntos
Camada de Gelo , Microbiota , Filogenia , Bactérias/genética , Metagenoma
8.
Clin Auton Res ; 34(4): 421-425, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38865034

RESUMO

PURPOSE: Prior studies reported evidence of autonomic involvement in motor neuron disease and suggested more severe dysfunction in upper motor neuron predominant syndromes. Hence, we sought to characterize autonomic impairment in primary lateral sclerosis. METHODS: Neurological evaluations, thermoregulatory sweat tests, and autonomic reflex screens were analyzed retrospectively in 34 primary lateral sclerosis patients (28 definite and 6 probable). Patients with other potential causes of autonomic failure and patients with autonomic testing results compromised by artifact were excluded. RESULTS: A total of 17 patients reported autonomic symptoms. Orthostatic lightheadedness was most frequent (8 patients), followed by bladder (7), bowel (5), and erectile dysfunction (3). The autonomic reflex screens of 33 patients were reviewed; 20 patients had abnormal studies. The thermoregulatory sweat tests of 19 patients were reviewed; 11 patients had abnormal studies. Composite Autonomic Severity Score was calculated for 33 patients and found abnormal in 20/33 patients (60.6%): 15/20 patients (75%) had mild impairment, and 5/20 patients (25%) had moderate impairment. The frequencies of testing abnormalities were: sudomotor 18/20 (90%), cardiovagal 9/20 (45%), and adrenergic 6/20 (30%). Sweat loss pattern analysis showed global, regional, and mixed patterns to be more common than length-dependent and distal patterns. CONCLUSION: We found evidence of frequent autonomic dysfunction in primary lateral sclerosis, which is generally of modest severity akin to prior reports for amyotrophic lateral sclerosis, but more commonly in a pattern consistent with preganglionic/ganglionic localization. This suggests that primary lateral sclerosis, as with amyotrophic lateral sclerosis, is a multisystem disease that affects the autonomic nervous system.


Assuntos
Doenças do Sistema Nervoso Autônomo , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Doenças do Sistema Nervoso Autônomo/diagnóstico , Doenças do Sistema Nervoso Autônomo/etiologia , Adulto , Estudos Retrospectivos , Idoso , Sudorese/fisiologia , Doença dos Neurônios Motores/fisiopatologia , Doença dos Neurônios Motores/diagnóstico , Doença dos Neurônios Motores/complicações , Sistema Nervoso Autônomo/fisiopatologia
9.
Eur Arch Otorhinolaryngol ; 281(5): 2421-2428, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225396

RESUMO

INTRODUCTION: Isolated sphenoidal sinusitis (ISS) is a rare disease with non-specific symptoms and a potential for complications. Diagnosis is made clinically, endoscopically, and with imaging like CT scans or MRIs. This study aimed to evaluate if ISS meets the EPOS 2020 criteria for diagnosing acute rhinosinusitis and if new diagnostic criteria are needed. MATERIALS AND METHODS: The study analyzed 193 charts and examination records from 2000 to 2022 in patients diagnosed with isolated sphenoidal sinusitis at the Ziv Medical Center in Safed, Israel. Of the 193, 57 patients were excluded, and the remaining 136 patients were included in the final analysis. Patients were evaluated using Ear, Nose and Throat (ENT), neurological and sinonasal video endoscopy, radiological findings, demographic data, symptoms and signs, and laboratory results. All these findings were reviewed according to the EPOS 2020 acute sinusitis diagnosis criteria and were analyzed to determine if ISS symptoms and signs fulfilled them. RESULTS: The patients included 40 men and 96 women, ranging in age from 17 to 86 years (mean ± SD, 37 ± 15.2 years). A positive endoscopy and radiography were encountered in 29.4%, and headache was present in 98%; the most common type was retro-orbital headache (31%). The results showed that there is no relationship between the symptoms of isolated sphenoidal sinusitis and the criteria for diagnosing acute sinusitis according to EPOS 2020. CONCLUSION: ISS is an uncommon entity encountered in clinical practice with non-specific symptoms and a potential for complications. Therefore, the condition must be kept in mind by clinicians, and prompt diagnosis and treatment must be initiated. This kind of sinusitis does not fulfill the standard guidelines for acute sinusitis diagnosis criteria.


Assuntos
Rinite , Sinusite , Sinusite Esfenoidal , Masculino , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Sinusite Esfenoidal/diagnóstico por imagem , Sinusite Esfenoidal/terapia , Rinite/diagnóstico , Doença Crônica , Sinusite/diagnóstico por imagem , Sinusite/tratamento farmacológico , Cefaleia , Doença Aguda
10.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674120

RESUMO

Hematopoietic acute radiation syndrome (H-ARS) involves injury to multiple organ systems following total body irradiation (TBI). Our laboratory demonstrated that captopril, an angiotensin-converting enzyme inhibitor, mitigates H-ARS in Göttingen minipigs, with improved survival and hematopoietic recovery, as well as the suppression of acute inflammation. However, the effects of captopril on the gastrointestinal (GI) system after TBI are not well known. We used a Göttingen minipig H-ARS model to investigate captopril's effects on the GI following TBI (60Co 1.79 or 1.80 Gy, 0.42-0.48 Gy/min), with endpoints at 6 or 35 days. The vehicle or captopril (0.96 mg/kg) was administered orally twice daily for 12 days, starting 4 h post-irradiation. Ilea were harvested for histological, protein, and RNA analyses. TBI increased congestion and mucosa erosion and hemorrhage, which were modulated by captopril. GPX-4 and SLC7A11 were downregulated post-irradiation, consistent with ferroptosis at 6 and 35 days post-irradiation in all groups. Interestingly, p21/waf1 increased at 6 days in vehicle-treated but not captopril-treated animals. An RT-qPCR analysis showed that radiation increased the gene expression of inflammatory cytokines IL1B, TNFA, CCL2, IL18, and CXCL8, and the inflammasome component NLRP3. Captopril suppressed radiation-induced IL1B and TNFA. Rectal microbiome analysis showed that 1 day of captopril treatment with radiation decreased overall diversity, with increased Proteobacteria phyla and Escherichia genera. By 6 days, captopril increased the relative abundance of Enterococcus, previously associated with improved H-ARS survival in mice. Our data suggest that captopril mitigates senescence, some inflammation, and microbiome alterations, but not ferroptosis markers in the intestine following TBI.


Assuntos
Síndrome Aguda da Radiação , Captopril , Modelos Animais de Doenças , Ferroptose , Microbioma Gastrointestinal , Inflamação , Porco Miniatura , Irradiação Corporal Total , Animais , Síndrome Aguda da Radiação/tratamento farmacológico , Suínos , Inflamação/patologia , Captopril/farmacologia , Irradiação Corporal Total/efeitos adversos , Ferroptose/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/microbiologia , Intestinos/patologia , Intestinos/efeitos dos fármacos , Intestinos/efeitos da radiação , Masculino , Inibidores da Enzima Conversora de Angiotensina/farmacologia
11.
Molecules ; 29(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675533

RESUMO

Aryl and heteroaryl iodides have been efficiently converted into the corresponding thioacetates in cyclopentyl methyl ether (CPME), a green solvent, under Cu catalysis. The chemoselectivity of the reaction is mainly controlled by electronic factors, enabling the conversion of both electron-rich and electron-deficient substrates into the corresponding thioacetates in good to excellent yields. The products can be easily deprotected to the corresponding thiolates to carry out additional synthetic transformations in situ. Surprisingly, despite CPME's relatively low dielectric constant, the reaction rate significantly increased when conducted under microwave irradiation conditions. This synthetic methodology exhibits a remarkable tolerance to functional groups, mild reaction conditions, and a wide substrate scope, utilizing a safe and inexpensive CuI pre-catalyst in the green solvent CPME. A non-aqueous workup allowing for the complete recovery of both catalyst and solvent makes this approach an environmentally sustainable protocol for C(sp2) sulfur functionalization. Additionally, the reaction shows selective cross-coupling with iodides in competition with chlorides and bromides, allowing its use in multistep syntheses. To demonstrate the potential of this methodology, it was applied to the high-yield synthesis of a photochromic dithienylethene, where a selective synthesis had not been reported before.

12.
World J Microbiol Biotechnol ; 40(6): 192, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709285

RESUMO

The global concern over arsenic contamination in water due to its natural occurrence and human activities has led to the development of innovative solutions for its detection and remediation. Microbial metabolism and mobilization play crucial roles in the global cycle of arsenic. Many microbial arsenic-resistance systems, especially the ars operons, prevalent in bacterial plasmids and genomes, play vital roles in arsenic resistance and are utilized as templates for designing synthetic bacteria. This review novelty focuses on the use of these tailored bacteria, engineered with ars operons, for arsenic biosensing and bioremediation. We discuss the advantages and disadvantages of using synthetic bacteria in arsenic pollution treatment. We highlight the importance of genetic circuit design, reporter development, and chassis cell optimization to improve biosensors' performance. Bacterial arsenic resistances involving several processes, such as uptake, transformation, and methylation, engineered in customized bacteria have been summarized for arsenic bioaccumulation, detoxification, and biosorption. In this review, we present recent insights on the use of synthetic bacteria designed with ars operons for developing tailored bacteria for controlling arsenic pollution, offering a promising avenue for future research and application in environmental protection.


Assuntos
Arsênio , Bactérias , Biodegradação Ambiental , Técnicas Biossensoriais , Óperon , Técnicas Biossensoriais/métodos , Arsênio/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biologia Sintética/métodos , Engenharia Genética
13.
BMC Immunol ; 24(1): 33, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752437

RESUMO

BACKGROUND: Patients with idiopathic inflammatory myopathy (IIM) often express a different type of myositis-specific autoantibodies (MSAs), each associated with different clinical symptoms. Understanding the immunopathogenesis of various IIM subgroups can help improve the diagnosis and prognosis of IIM patients with different MSAs. However, the immune cell profiles of these IIM patients with anti-aminoacyl tRNA synthetase (ARS) or anti-melanoma differentiation-associated gene 5 (MDA5) autoantibodies remain unclear. We focused on the immune cell profiles of IIM patients with anti-ARS or anti-MDA5 autoantibodies. RESULTS: The peripheral blood from IIM patients with anti-MDA5 autoantibody (MDA5 + group, n = 24) or one of the anti-ARS autoantibodies (ARS + group, n = 40) autoantibodies, and healthy controls (HC group, n = 60) were collected and examined. We found that IIM patients had a lower CD3 T cell population compared to the HC group. IIM patients showed a significantly lower TN cell population and a higher TEMRA cell population. Higher Th17 and Treg cell populations were found in these IIM patients than in the HC group. In these IIM patients, the MDA5 + group exhibited the higher percentages of Th17 and Treg cells than the ARS + group. It is noteworthy that the percentage of Th1 cells in the survival subgroup was higher than in the death subgroup in IIM patients with ARS + or MDA5 + . Furthermore, in the MDA5 + group, the percentage of Treg cells was higher in the survival subgroup compared to the death subgroup. CONCLUSIONS: Our study demonstrated that elevated Th1 may be a good prognostic indicator in IIM patients with ARS + or MDA5 + . Elevated Treg may also help predict a good prognosis in MDA5 + IIM patients. However, more large-scale studies and clinical samples are needed to verify the significance of Th1 and Treg cell subsets in clinical outcomes for these IIM patients with ARS + or MDA5 + . These data may help design a therapeutic approach that specifically targets the pathogenic immune molecular responsible for autoimmune attacks in IIM.


Assuntos
Aminoacil-tRNA Sintetases , Miosite , Humanos , Autoanticorpos , Miosite/diagnóstico , Prognóstico , Diferenciação Celular , Estudos Retrospectivos
14.
Development ; 147(2)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969356

RESUMO

Neural development is controlled at multiple levels to orchestrate appropriate choices of cell fate and differentiation. Although more attention has been paid to the roles of neural-restricted factors, broadly expressed factors can have compelling impacts on tissue-specific development. Here, we describe in vivo conditional knockout analyses of murine Ars2, which has mostly been studied as a general RNA-processing factor in yeast and cultured cells. Ars2 protein expression is regulated during neural lineage progression, and is required for embryonic neural stem cell (NSC) proliferation. In addition, Ars2 null NSCs can still transition into post-mitotic neurons, but fail to undergo terminal differentiation. Similarly, adult-specific deletion of Ars2 compromises hippocampal neurogenesis and results in specific behavioral defects. To broaden evidence for Ars2 as a chromatin regulator in neural development, we generated Ars2 ChIP-seq data. Notably, Ars2 preferentially occupies DNA enhancers in NSCs, where it colocalizes broadly with NSC regulator SOX2. Ars2 association with chromatin is markedly reduced following NSC differentiation. Altogether, Ars2 is an essential neural regulator that interacts dynamically with DNA and controls neural lineage development.


Assuntos
Envelhecimento , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/metabolismo , Neurogênese , Fatores de Transcrição/metabolismo , Envelhecimento/genética , Animais , Comportamento Animal , Encéfalo/embriologia , Encéfalo/metabolismo , Linhagem da Célula/genética , Proliferação de Células , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos/genética , Deleção de Genes , Genoma , Hidrocefalia/embriologia , Hidrocefalia/genética , Camundongos Endogâmicos C57BL , Mosaicismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética
15.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33822878

RESUMO

BACKGROUND: Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic following its initial emergence in China. SARS-CoV-2 has a positive-sense single-stranded RNA virus genome of around 30Kb. Using next-generation sequencing technologies, a large number of SARS-CoV-2 genomes are being sequenced at an unprecedented rate and being deposited in public repositories. For the de novo assembly of the SARS-CoV-2 genomes, a myriad of assemblers is being used, although their impact on the assembly quality has not been characterized for this virus. In this study, we aim to understand the variabilities on assembly qualities due to the choice of the assemblers. RESULTS: We performed 6648 de novo assemblies of 416 SARS-CoV-2 samples using eight different assemblers with different k-mer lengths. We used Illumina paired-end sequencing reads and compared the assembly quality of those assemblers. We showed that the choice of assembler plays a significant role in reconstructing the SARS-CoV-2 genome. Two metagenomic assemblers, e.g. MEGAHIT and metaSPAdes, performed better compared with others in most of the assembly quality metrics including, recovery of a larger fraction of the genome, constructing larger contigs and higher N50, NA50 values, etc. We showed that at least 09% (259/2873) of the variants present in the assemblies between MEGAHIT and metaSPAdes are unique to one of the assembly methods. CONCLUSION: Our analyses indicate the critical role of assembly methods for assembling SARS-CoV-2 genome using short reads and their impact on variant characterization. This study could help guide future studies to determine the best-suited assembler for the de novo assembly of virus genomes.


Assuntos
Genoma Viral , Mutação , SARS-CoV-2/genética , COVID-19/virologia , Bases de Dados Genéticas , Sequências de Repetição em Tandem
16.
Appl Environ Microbiol ; 89(4): e0176822, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36951561

RESUMO

The hgcAB gene pair encodes mercury (Hg) methylation capability in a diverse group of microorganisms, but its evolution and transcriptional regulation remain unknown. Working from the possibility that the evolutionary function of HgcAB may not be Hg methylation, we test a possible link to arsenic resistance. Using model Hg methylator Pseudodesulfovibrio mercurii ND132, we evaluated transcriptional control of hgcAB by a putative ArsR encoded upstream and cotranscribed with hgcAB. This regulator shares homology with ArsR repressors of arsenic resistance and S-adenosylhomocysteine (SAH)-responsive regulators of methionine biosynthesis but is distinct from other ArsR/SahR proteins in P. mercurii. Using quantitative PCR (qPCR) and RNA sequencing (RNA-seq) transcriptome analyses, we confirmed this ArsR regulates hgcAB transcription and is responsive to arsenic and SAH. Additionally, RNA-seq indicated a possible link between hgcAB activity and arsenic transformations, with significant upregulation of other ArsR-regulated arsenic resistance operons alongside hgcAB. Interestingly, wild-type ND132 was less sensitive to As(V) (but not As(III)) than an hgcAB knockout strain, supporting the idea that hgcAB may be linked to arsenic resistance. Arsenic significantly impacted rates of Hg methylation by ND132; however, responses varied with culture conditions. Differences in growth and metabolic activity did not account for arsenic impacts on methylation. While arsenic significantly increased hgcAB expression, hgcAB gene and transcript abundance was not a good predictor of Hg methylation rates. Taken together, these results support the idea that Hg and As cycling are linked in P. mercurii ND132. Our results may hold clues to the evolution of hgcAB and the controls on Hg methylation in nature. IMPORTANCE This work reveals a link between microbial mercury methylation and arsenic resistance and may hold clues to the evolution of mercury methylation genes (hgcAB). Microbes with hgcAB produce methylmercury, a strong neurotoxin that readily accumulates in the food web. This study addresses a critical gap in our understanding about the environmental factors that control hgcAB expression. We show that hgcAB expression is controlled by an ArsR-like regulator responsive to both arsenic and S-adenosylhomocysteine in our model organism, Pseudodesulfovibrio mercurii ND132. Exposure to arsenic also significantly impacted Pseudodesulfovibrio mercurii ND132 mercury methylation rates. However, expression of hgcAB was not always a good predictor of Hg methylation rates, highlighting the roles of Hg bioavailability and other biochemical mechanisms in methylmercury production. This study improves our understanding of the controls on hgcAB expression, which is needed to better predict environmental methylmercury production.


Assuntos
Arsênio , Mercúrio , Compostos de Metilmercúrio , Compostos de Metilmercúrio/metabolismo , S-Adenosil-Homocisteína/metabolismo , Mercúrio/metabolismo , Metilação
17.
BMC Microbiol ; 23(1): 134, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37193944

RESUMO

BACKGROUND: Arsenic (As) with various chemical forms, including inorganic arsenic and organic arsenic, is the most prevalent water and environmental toxin. This metalloid occurs worldwide and many of its forms, especially arsenite [As(III)], cause various diseases including cancer. Organification of arsenite is an effective way for organisms to cope with arsenic toxicity. Microbial communities are vital contributors to the global arsenic biocycle and represent a promising way to reduce arsenite toxicity. METHODS: Brevundimonas sp. M20 with arsenite and roxarsone resistance was isolated from aquaculture sewage. The arsHRNBC cluster and the metRFHH operon of M20 were identified by sequencing. The gene encoding ArsR/methyltransferase fusion protein, arsRM, was amplified and expressed in Escherichia coli BL21 (DE3), and this strain showed resistance to arsenic in the present of 0.25-6 mM As(III), aresenate, or pentavalent roxarsone. The methylation activity and regulatory action of ArsRM were analyzed using Discovery Studio 2.0, and its functions were confirmed by methyltransferase activity analysis and electrophoretic mobility shift assays. RESULTS: The minimum inhibitory concentration of the roxarsone resistant strain Brevundimonas sp. M20 to arsenite was 4.5 mM. A 3,011-bp arsenite resistance ars cluster arsHRNBC and a 5649-bp methionine biosynthesis met operon were found on the 3.315-Mb chromosome. Functional prediction analyses suggested that ArsRM is a difunctional protein with transcriptional regulation and methyltransferase activities. Expression of ArsRM in E. coli increased its arsenite resistance to 1.5 mM. The arsenite methylation activity of ArsRM and its ability to bind to its own gene promoter were confirmed. The As(III)-binding site (ABS) and S-adenosylmethionine-binding motif are responsible for the difunctional characteristic of ArsRM. CONCLUSIONS: We conclude that ArsRM promotes arsenite methylation and is able to bind to its own promoter region to regulate transcription. This difunctional characteristic directly connects methionine and arsenic metabolism. Our findings contribute important new knowledge about microbial arsenic resistance and detoxification. Future work should further explore how ArsRM regulates the met operon and the ars cluster.


Assuntos
Arsênio , Arsenicais , Arsenitos , Roxarsona , Arsênio/metabolismo , Arsenitos/farmacologia , Arsenitos/metabolismo , Sequência de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Metilação , Roxarsona/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Arsenicais/metabolismo , Arsenicais/farmacologia , Óperon , Metiltransferases/genética , Metionina , Regulação Bacteriana da Expressão Gênica , Transativadores/genética
18.
Anal Biochem ; 664: 115037, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623679

RESUMO

Infectious respiratory diseases such as COVID-19 are serious and global concerns from the past to the present. To isolate the spread of infectious diseases even in the absence of a health system, a simple, inexpensive, reliable, sensitive, and selective molecular diagnosis platform for Point of Care Test (POCT) is required. Especially, the nucleic acid extraction step is difficult to perform out of laboratory. Here, we propose a paper-based lysis (PBL) strip for nucleic acid extraction, especially in low-resource settings (LRS). PBL strips are suitable for isolating RNA from viruses with biological interference and inhibitors. We optimized the buffer compositions and membranes of the strip. A simple preparation method using a PBL strip could obtain an eluent for downstream inspection within 20 min. Overall, 104 copies/swaps were detected for 20 min for amplification in combination with Reverse Transcription Loop-Mediated Amplification (RT-LAMP).


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , RNA Viral/genética , Teste para COVID-19 , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade
19.
J Eukaryot Microbiol ; 70(1): e12943, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36018447

RESUMO

Sulfur is a required macroelement for all organisms, and sulfate deficiency causes growth and developmental defects. Arylsulfatases (ARS) hydrolyze sulfate from sulfate esters and make sulfate bioavailable for plant uptake. These enzymes are found in microorganisms and animals; however, plant genomes do not encode any ARS gene. Our database searches found nineteen ARS genes in the genome of Chlamydomonas reinhardtii. Among these, ARS1 and ARS2 were studied in the literature; however, the remaining seventeen gene models were not studied. Our results show that putative polypeptide sequences of the ARS gene models all have the sulfatase domain and sulfatase motifs found in known ARSs. Phylogenetic analyses show that C. reinhardtii proteins are in close branches with Volvox carterii proteins while they were clustered in a separate group from Homo sapiens and bacterial species (Pseudomonas aeruginosa and Rhodopirellula baltica SH1), except human Sulf1, Sulf2, and GNS are clustered with algal ARSs. RT-PCR analyses showed that transcription of ARS6, ARS7, ARS11, ARS12, ARS13, ARS17, and ARS19 increased under sulfate deficiency. However, this increase was not as high as the increase seen in ARS2. Since plant genomes do not encode any ARS gene, our results highlight the importance of microbial ARS genes.


Assuntos
Arilsulfatases , Chlamydomonas reinhardtii , Animais , Humanos , Arilsulfatases/genética , Arilsulfatases/metabolismo , Filogenia , Chlamydomonas reinhardtii/genética , Sulfatases/genética , Sulfatos/metabolismo
20.
Sens Actuators B Chem ; 378: 133121, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36514318

RESUMO

Alkaline phosphatase (ALP)-induced in situ fluorescent immunosensor is less investigated and reported. Herein, a high-performance ALP-labeled in situ fluorescent immunoassay platform was constructed. The developed platform was based on a fluorogenic self-assembly reaction between pyridineboronic acid (PyB(OH)2) and alizarin red S (ARS). We first used density functional theory (DFT) to theoretically calculate the changes of Gibbs free energy of the used chemicals before and after the combination and simulated the electrostatic potential on its' surfaces. The free ARS and PyB(OH)2 exist alone, neither emits no fluorescence. However, the ARS/PyB(OH)2 complex emits strong fluorescence, which could be effectively quenched by PPi based on the stronger affinity between PPi and PyB(OH)2 than that of ARS and PyB(OH)2. PyB(OH)2 coordinated with ARS again in the presence of ALP due to the ALP-catalyzed hydrolysis of PPi, and correspondingly, the fluorescence was restored. We chose cTnI and SARS-CoV-2 N protein as the model antigen to construct ALP-induced immunosensor, which exhibited a wide dynamic range of 0-175 ng/mL for cTnI and SARS-CoV-2 N protein with a low limit of detection (LOD) of 0.03 ng/mL and 0.17 ng/mL, respectively. Moreover, the proposed immunosensor was used to evaluate cTnI and SARS-CoV-2 N protein level in serum with satisfactory results. Consequently, the method laid the foundation for developing novel fluorescence-based ALP-labeled ELISA technologies in the early diagnosis of diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA