Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
BMC Genomics ; 25(1): 260, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454328

RESUMO

In this study, we conducted an assembly and analysis of the organelle genomes of Aconitum carmichaelii. Our investigation encompassed the examination of organelle genome structures, gene transfer events, and the environmental selection pressures affecting A. carmichaelii. The results revealed distinct evolutionary patterns in the organelle genomes of A. carmichaelii. Especially, the plastome exhibited a more conserved structure but a higher nucleotide substitution rate (NSR), while the mitogenome displayed a more complex structure with a slower NSR. Through homology analysis, we identified several instances of unidirectional protein-coding genes (PCGs) transferring from the plastome to the mitogenome. However, we did not observe any events which genes moved from the mitogenome to the plastome. Additionally, we observed multiple transposable element (TE) fragments in the organelle genomes, with both organelles showing different preferences for the type of nuclear TE insertion. Divergence time estimation suggested that rapid differentiation occurred in Aconitum species approximately 7.96 million years ago (Mya). This divergence might be associated with the reduction in CO2 levels and the significant uplift of the Qinghai-Tibet Plateau (QTP) during the late Miocene. Selection pressure analysis indicated that the dN/dS values of both organelles were less than 1, suggested that organelle PCGs were subject to purification selection. However, we did not detect any positively selected genes (PSGs) in Subg. Aconitum and Subg. Lycoctonum. This observation further supports the idea that stronger negative selection pressure on organelle genes in Aconitum results in a more conserved amino acid sequence. In conclusion, this study contributes to a deeper understanding of organelle evolution in Aconitum species and provides a foundation for future research on the genetic mechanisms underlying the structure and function of the Aconitum plastome and mitogenome.


Assuntos
Aconitum , Filogenia , Aconitum/genética , Aconitum/química , Aconitum/metabolismo , Organelas/genética , Tibet
2.
BMC Plant Biol ; 24(1): 332, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664645

RESUMO

BACKGROUND: Aconitum carmichaelii Debx. has been widely used as a traditional medicinal herb for a long history in China. It is highly susceptible to various dangerous diseases during the cultivation process. Downy mildew is the most serious leaf disease of A. carmichaelii, affecting plant growth and ultimately leading to a reduction in yield. To better understand the response mechanism of A. carmichaelii leaves subjected to downy mildew, the contents of endogenous plant hormones as well as transcriptome sequencing were analyzed at five different infected stages. RESULTS: The content of 3-indoleacetic acid, abscisic acid, salicylic acid and jasmonic acid has changed significantly in A. carmichaelii leaves with the development of downy mildew, and related synthetic genes such as 9-cis-epoxycarotenoid dioxygenase and phenylalanine ammonia lyase were also significant for disease responses. The transcriptomic data indicated that the differentially expressed genes were primarily associated with plant hormone signal transduction, plant-pathogen interaction, the mitogen-activated protein kinase signaling pathway in plants, and phenylpropanoid biosynthesis. Many of these genes also showed potential functions for resisting downy mildew. Through weighted gene co-expression network analysis, the hub genes and genes that have high connectivity to them were identified, which could participate in plant immune responses. CONCLUSIONS: In this study, we elucidated the response and potential genes of A. carmichaelii to downy mildew, and observed the changes of endogenous hormones content at different infection stages, so as to contribute to the further screening and identification of genes involved in the defense of downy mildew.


Assuntos
Aconitum , Doenças das Plantas , Reguladores de Crescimento de Plantas , Transcriptoma , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Aconitum/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
3.
J Intensive Care Med ; : 8850666241245703, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613376

RESUMO

Aconite poisoning refers to toxicity resulting from plants belonging to the Aconitum genus, which comprises over 350 different species of perennial flowering plants that grow in temperate mountainous areas of the northern hemisphere (North America, Europe, Asia). These plants contain a group of toxins known as aconite alkaloids, which encompass numerous closely related toxic compounds. Conventional teaching from toxicology textbooks has broadly classified these alkaloids based on their mechanism of action, often simplifying them as substances that prevent sodium channel inactivation. However, this is an oversimplified and sometimes inaccurate description, as some aconite alkaloids can act as sodium channel blockers. Aconite alkaloids have a long history of use as poisonous substances and have been historically employed for hunting, assassinations, traditional medicine, and self-inflicted harm. Toxicity can occur due to the consumption of traditional medicines derived from aconitum plants or the ingestion of aconite plants and their derivatives. The clinical manifestations of aconite poisoning may encompass gastrointestinal symptoms, sensory alterations, seizures, and life-threatening dysrhythmias that may not respond to standard treatments. Treatment is primarily supportive however evaluation and management of these patients should be personalized and carried out in collaboration with a toxicologist.

4.
Metab Brain Dis ; 39(5): 705-718, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795262

RESUMO

Aconitum coreanum (A. coreanum), a traditional Chinese medicine, has been proved to treat ischemic stroke (IS). However, the mechanisms of A. coreanum's anti-stroke is currently unknown. This study aimed to uncover the effect and mechanisms of A. coreanum. And study raw Aconitum coreanum (RA) and steamed Aconitum coreanum (SA) and Aconitum coreanum processed with ginger and Alumen (GA) on the mechanism of the pharmacological action of treating IS. Determining whether the efficacy is affected after processing. The right unilateral ligation of the carotid artery of gerbils was used to mimic IS. The neurological function score, infarct volume, oxidative stress level and inflammatory factor expression were measured in gerbils after IS. Western blot and immunofluorescence analyses were conducted to evaluate the expression of related proteins. Metabolomic analyzes IS-related metabolic pathways in urinary metabolites. RA, SA and GA significantly improved the infarct volume and behavioral score of IS gerbils, increased the expression of brain tissue superoxide dismutase (SOD), glutathione (GSH), nitric oxide (NO) and decreased the content of malondialdehyde (MDA), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α). Western blot and immunofluorescence analysis results showed that RA, SA and GA significantly increased the expression of P-Akt, PI3K, HO-1 and KEAP1. Metabolomic studies identified 112 differential metabolites, including L-Proline, Riboflavin, Leukotriene D4, and 7-Methylxanthine, as potential biomarkers of stroke, involving 14 metabolic pathways including riboflavin metabolism, pyrimidine metabolism, and purine metabolism. Our findings indicated that A. coreanum protected against cerebral ischemia injury probably via the PI3K/Akt and KEAP1/NRF2 pathway. A. coreanum before and after processing both had a protective effect against IS brain injury in gerbils. The A. coreanum efficacy was not reduced after processing. Even compared to RA, SA had better efficacy.


Assuntos
Aconitum , Gerbillinae , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , AVC Isquêmico/metabolismo , AVC Isquêmico/prevenção & controle
5.
Chem Biodivers ; 21(2): e202301656, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217357

RESUMO

Aconitum spp. are important medicinal plants mentioned in Ayurveda as Ativisa or Vatsanabha. The present study aims to evaluate anti-rheumatic potential in seven Aconitum species and correlation with aconitine and hypaconitine content. Anti-rheumatic potential was analyzed through in vitro xanthine oxidase inhibition, anti-inflammatory and ROS scavenging assays; and quantification of aconitine and hypaconitine with RP-HPLC method validated as per ICH guidelines. The findings reveal that A. palmatum possessed the most promising response (IC50 =12.68±0.15 µg/ml) followed by A. ferox (IC50 =12.912±1.87 µg/ml) for xanthin oxidase inhibition. We observed a wide variation in aconitine and hypaconitine content ranging from 0.018 %-1.37 % and 0.0051 %-0.077 % respectively on dry weight basis. Aconitine and hypaconitine showed moderate positive correlation (r=0.68 and 0.59 respectively) with anti-rheumatic potential. The study identifies potential alternative species of Aconitum that can help in sustainable availability of quality raw material.


Assuntos
Aconitina/análogos & derivados , Aconitum , Medicamentos de Ervas Chinesas , Aconitina/farmacologia , Aconitina/análise , Siquim , Himalaia , Cromatografia Líquida de Alta Pressão/métodos , Índia
6.
Chem Biodivers ; 21(8): e202400977, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837616

RESUMO

Two previously uncharacterized compounds, an aconitine-type C19-diterpenoid alkaloid (1) and a napelline-type diterpenoid alkaloid C20-diterpenoid alkaloid (2), as well as ten known compounds (3-12), were isolated from Aconitum pendulum. Their structures were elucidated based on spectroscopic data, including 1D and 2D NMR, IR, HR-ESI-MS, and single-crystal X-ray diffraction analysis. The anti-insecticidal activities of these compounds were evaluated by contact toxicity tests against two-spotted spider mites, and compounds 1, 2, and 9 showed moderate contact toxicity, with LC50 values of 0.86±0.09, 0.95±0.23, and 0.89±0.19 mg/mL, respectively. This study highlights the potential use of diterpenoid alkaloids as natural plant-derived pesticides for the management of plant pests.


Assuntos
Aconitum , Alcaloides , Diterpenos , Aconitum/química , Diterpenos/química , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Animais , Tetranychidae/efeitos dos fármacos , Estrutura Molecular , Conformação Molecular , Cristalografia por Raios X , Inseticidas/química , Inseticidas/isolamento & purificação , Inseticidas/farmacologia , Modelos Moleculares
7.
J Asian Nat Prod Res ; : 1-7, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975972

RESUMO

A chemical investigation on the roots of Aconitum nagarum afforded two undescribed C19-diterpenoid alkaloids nagarumines D and E (1 and 2). The structures of the new compounds were elucidated by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy, as well as HR-ESI-MS. The two isolated alkaloids were tested in vitro for cytotoxic activity against five gastric tumor cell lines. Consequently, compound 2 exhibited some cytotoxicities against several human cancer cell lines with IC50 value less than 20.0 µM.

8.
Molecules ; 29(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893515

RESUMO

The adoption of green chemistry protocols in nanoparticle (NP) synthesis has exhibited substantial potential and is presently a central focus in research for generating versatile NPs applicable across a broad spectrum of applications. In this scientific contribution, we, for the first time, examined the ability of Aconitum Laeve (A. Laeve) crude extract to synthesize silver and gold nanoparticles (AgNPs@AL; AuNP@AL) and explored their potential applications in biological activities and the catalytic degradation of environmental pollutants. The synthesized NPs exhibited a distinctive surface plasmon resonance pattern, a spherical morphology with approximate sizes of 5-10 nm (TEM imaging), a crystalline architecture (XRD analysis), and potential functional groups identified by FTIR spectroscopy. The antibacterial activity was demonstrated by inhibition zones that measured 16 and 14 mm for the AgNPs@AL and AuNP@AL at a concentration of 80 µg/mL against Staphylococcus aureus and 14 and 12 mm against Escherichia coli, respectively. The antioxidant potential of the synthesized NPs was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-Oxide (PTIO), and 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. Our findings suggest that the AuNP@AL effectively countered the tested radicals considerably, displaying IC50 values of 115.9, 103.54, and 180.85 µg/mL against DPPH, PTIO, and ABTS, respectively. In contrast, the AgNPs@AL showed IC50 values of 144.9, 116.36, and 95.39 µg/mL against the respective radicals. In addition, both the NPs presented significant effectiveness in the photocatalytic degradation of methylene blue and rhodamine B. The overall observations indicate that A. Laeve possesses a robust capability to synthesize spherical nanoparticles, exhibiting excellent dispersion and showcasing potential applications in both biological activities and environmental remediation.


Assuntos
Aconitum , Antibacterianos , Antioxidantes , Ouro , Nanopartículas Metálicas , Extratos Vegetais , Prata , Nanopartículas Metálicas/química , Prata/química , Ouro/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Aconitum/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Catálise , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/síntese química , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Química Verde , Escherichia coli/efeitos dos fármacos
9.
J Sci Food Agric ; 104(2): 746-758, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37670420

RESUMO

BACKGROUND: Aconitum carmichaelii is an industrially cultivated medicinal plant in China and its lateral and mother roots are used in traditional Chinese medicine due to the presence of alkaloids. However, the rootlets and aerial parts are discarded after collection of the roots, and the non-toxic polysaccharides in this plant have attracted less attention than the alkaloids and poisonous features. In this study, five neutral and 14 acidic polysaccharide fractions were isolated systematically from different plant parts of A. carmichaelii, and their structural features and bioactivity were studied and compared. RESULTS: The neutral fraction isolated from the rootlets differed from those isolated from the lateral and mother roots. It consisted of less starch and more possible mannans, galactans, and/or xyloglucans, being similar to those of the aerial parts. Pectic polysaccharides containing homogalacturonan and branched type-I rhamnogalacturonan (RG-I) were present in all plant parts of A. carmichaelii. However, more arabinogalactan (AG)-II side chains in the RG-I backbone were present in the aerial parts of the plants, while more amounts of arabinans were found in the roots. Various immunomodulatory effects were observed, determined by complement fixation activity and anti-inflammatory effects on the intestinal epithelial cells of all polysaccharide fractions. CONCLUSION: This study highlighted the diversity of polysaccharides present in A. carmichaelii, especially in the unutilized plant parts, and showed their potential medicinal value. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Aconitum , Alcaloides , Plantas Medicinais , Aconitum/química , Alcaloides/análise , Polissacarídeos/química , China , Raízes de Plantas/química
10.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1774-1784, 2024 Apr.
Artigo em Zh | MEDLINE | ID: mdl-38812189

RESUMO

The study aims to investigate the effects and potential mechanism of raw and processed Aconitum pendulum Busch on rheumatoid arthritis(RA) and analyze their toxicity attenuating and efficacy retaining effects. The bovine type Ⅱ collagen-induced arthritis(CIA) rat model was established. The weight, cardiac index, immune organ index, and arthritis index of the rats were recorded and calculated after administration. ELISA was used to measure the expressions of creatine kinase(CK), cardiac troponin T(cTnT), and multiple factors. The pathological morphological changes in heart tissue and ankle joint tissue were observed by hematoxylin-eosin staining. Connexin 43(Cx43) expression in the hearts of CIA rats was detected via immunohistochemical method. The levels of endogenous metabolites in the serum of CIA rats were detected by UPLC-Q-TOF-MS. Potential biomarkers were screened, and related metabolic pathways were analyzed. The results showed that raw A. pendulum could induce local myocardial fiber degeneration and necrosis, increase the cardiac index, decrease the average positive area of Cx43 expression significantly, and increase the expressions of CK and cTnT in cardiac tissue of rats. Meanwhile, raw A. pendulum could decrease the immune organ index, interleukin-6(IL-6), and other inflammatory cytokine contents in the serum and improve the damaged synovium and joint surface of CIA rats, with toxicity and efficacy coexisting. The Zanba stir-fired A. pendulum could reduce the index of arthritis, immune organ index, and content of IL-6 and inflammatory cytokines in serum and improve damaged synovium and joint surface of CIA rats with no obvious cardiac toxicity, showing significant toxicity attenuating and efficacy retaining effects. A total of 19 potential biomarkers of raw A. pendulum and Zanba stir-fired A. pendulum against RA were screened by serum metabolomics, including glycerophospholipid metabolism, glycine, serine, and threonine metabolism, arginine and proline metabolism, and steroid hormone synthesis. In conclusion, Xizang medicine A. pendulum is preventive and curative for RA. Raw A. pendulum has certain cardiotoxicity, and Zanba stir-fired A. pendulum has significant toxicity attenuating and efficacy retaining effects. The anti-RA mechanism may be related to the regulation of glycerophospholipid and amino acid metabolism.


Assuntos
Aconitum , Artrite Reumatoide , Medicamentos de Ervas Chinesas , Metabolômica , Animais , Aconitum/química , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Ratos , Medicamentos de Ervas Chinesas/administração & dosagem , Masculino , Feminino , Humanos , Ratos Sprague-Dawley , Conexina 43/metabolismo , Conexina 43/genética , Bovinos , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Creatina Quinase/sangue
11.
Fa Yi Xue Za Zhi ; 40(2): 186-191, 2024 Apr 25.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38847035

RESUMO

OBJECTIVES: To explore the postmortem diffusion rule of Aconitum alkaloids and their metabolites in poisoned rabbits, and to provide a reference for identifying the antemortem poisoning or postmortem poisoning of Aconitum alkaloids. METHODS: Twenty-four rabbits were sacrificed by tracheal clamps. After 1 hour, the rabbits were administered with aconitine LD50 in decocting aconite root powder by intragastric administration. Then, they were placed supine and stored at 25 ℃. The biological samples from 3 randomly selected rabbits were collected including heart blood, peripheral blood, urine, heart, liver, spleen, lung and kidney tissues at 0 h, 4 h, 8 h, 12 h, 24 h, 48 h, 72 h and 96 h after intragastric administration, respectively. Aconitum alkaloids and their metabolites in the biological samples were analyzed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). RESULTS: At 4 h after intragastric administration, Aconitum alkaloids and their metabolites could be detected in heart blood, peripheral blood and major organs, and the contents of them changed dynamically with the preservation time. The contents of Aconitum alkaloids and their metabolites were higher in the spleen, liver and lung, especially in the spleen which was closer to the stomach. The average mass fraction of benzoylmesaconine metabolized in rabbit spleen was the highest at 48 h after intragastric administration. In contrast, the contents of Aconitum alkaloids and their metabolites in kidney were all lower. Aconitum alkaloids and their metabolites were not detected in urine. CONCLUSIONS: Aconitum alkaloids and their metabolites have postmortem diffusion in poisoned rabbits, diffusing from high-content organs (stomach) to other major organs and tissues as well as the heart blood. The main mechanism is the dispersion along the concentration gradient, while urine is not affected by postmortem diffusion, which can be used as the basis for the identification of antemortem and postmortem Aconitum alkaloids poisoning.


Assuntos
Aconitum , Alcaloides , Fígado , Espectrometria de Massas em Tandem , Animais , Coelhos , Aconitum/química , Alcaloides/metabolismo , Alcaloides/urina , Alcaloides/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Fígado/metabolismo , Rim/metabolismo , Pulmão/metabolismo , Aconitina/análogos & derivados , Aconitina/farmacocinética , Aconitina/urina , Aconitina/metabolismo , Aconitina/análise , Raízes de Plantas/química , Distribuição Tecidual , Baço/metabolismo , Mudanças Depois da Morte , Toxicologia Forense/métodos , Miocárdio/metabolismo , Fatores de Tempo , Masculino
12.
Plants (Basel) ; 13(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38592876

RESUMO

The classification system for the genus Aconitum is highly complex. It is also the subject of ongoing debate. Aconitum pendulum Busch and Aconitum flavum Hand.-Mazz. are perennial herbs of the genus Aconitum. Dried roots of these two plants are used in traditional Chinese medicine. In this study, morphological observations and ISSR molecular markers were employed to discriminate between A. flavum and A. pendulum, with the objective of gaining insights into the interspecies classification of Aconitum. The pubescence on the inflorescence of A. flavum was found to be appressed, while that on the inflorescence of A. pendulum was spread. UPGMA (unweighted pair-group method with arithmetic average) cluster analysis, PCoA (principal coordinates analysis), and Bayesian structural analysis divided the 199 individuals (99 individuals from DWM population and 100 individuals from QHL population) into two main branches, which is consistent with the observations of the morphology of pubescence on the inflorescence. These analyses indicated that A. flavum and A. pendulum are distinct species. No diagnostic bands were found between the two species. Two primer combinations (UBC808 and UBC853) were ultimately selected for species identification of A. flavum and A. pendulum. This study revealed high levels of genetic diversity in both A. flavum (He = 0.254, I = 0.395, PPB = 95.85%) and A. pendulum (He = 0.291, I = 0.445, PPB = 94.58%). We may say, therefore, that ISSR molecular markers are useful for distinguishing A. flavum and A. pendulum, and they are also suitable for revealing genetic diversity and population structure.

13.
Food Chem ; 451: 139499, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703731

RESUMO

Paotianxiong (PTX) is a processing product of Aconitum carmichaelii Debx., often used as a tonic food daily. However, the structure and activity of the polysaccharide component that plays a major role still need to be determined. In our work, two new polysaccharides were purified from PTX and named PTXP-1 and PTXP-2. Structural analysis showed that PTXP-1 is a glucan with a molecular weight of 915 Da and a structure of 4)-α-D-Glcp-(1 â†’ as the main chain. PTXP-2 is a glucose arabinoglycan with 4)-α-D-Glcp-(1 â†’ as the main chain, containing 8 glycosidic bonds attached, and a molecular weight of 57.9KDa. In vitro probiotic experiments demonstrated that PTXP-1 could significantly promote probiotic growth and acid production. In vivo experiments demonstrated that both PTXP-1 and PTXP-2 exhibited significant effectiveness in promoting the growth of intestinal probiotics. These findings help expand the application of polysaccharide components extracted from tonic herbs as functional food ingredients.


Assuntos
Polissacarídeos , Prebióticos , Probióticos , Prebióticos/análise , Polissacarídeos/química , Animais , Probióticos/química , Camundongos , Peso Molecular , Humanos , Masculino , Extratos Vegetais/química
14.
Yonago Acta Med ; 67(3): 270-279, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39176192

RESUMO

Aconite contains four highly toxic diester-diterpene alkaloids, including aconitine, mesaconitine, hypaconitine, and jesaconitine, in all plant parts. Aconite has been used as for suicide, murder, and as an arrow poison since ancient Greek and Roman times. Ventricular tachyarrhythmias are the most common cause of death in aconite poisoning, and antiarrhythmic drugs and cardioversion are ineffective. A 61-year-old woman ingested the crushed raw roots of a single aconite plant. An ambulance brought her to the Tottori University Hospital 30 min after ingestion. She had a history of chronic stage 5 kidney disease but was not on dialysis. Her heart rate (HR) was 120 bpm upon arrival. The patient developed sustained supraventricular tachycardia (SVT) at an HR of 165 bpm with frequent premature ventricular contractions (PVCs) 15 min after arrival. She then developed sustained monomorphic ventricular tachycardia (VT) at an HR of 200 bpm 20 min after arrival, which progressed to pulseless polymorphic VT. Cardioversion was unsuccessful. External cardiac massage restored spontaneous circulation; however, her underlying rhythm remained sustained SVT with frequent PVCs. These arrhythmias repeatedly led to circulatory arrest. She was administered six intravenous boluses of 2 g of MgSO4 in the emergency department, which prevented her from going into sustained pulseless VT. Hemoperfusion (HP) with activated charcoal was performed 1.5 h after arrival. The aconitine, mesaconitine, and hypaconitine plasma concentrations were high at 8.9, 23.5, and 5.5 ng/mL, respectively, before the start of HP but decreased to 1.7, 4.0, and 2.7 ng/mL, respectively, after 7 h of HP. She returned to sinus rhythm on the second day of hospitalization; however, the patient required maintenance hemodialysis. We concluded that high-dose IV MgSO4 is an effective treatment for fatal tachyarrhythmias due to aconite poisoning, and that in cases of renal failure, HP may be required to remove aconite toxins from the body.

15.
J Ethnopharmacol ; 323: 117693, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38176669

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aconitum carmichaelii is widely used in traditional Chinese medicine clinics as a bulk medicinal material. It has been used in China for more than two thousand years. Nevertheless, the stems and leaves of this plant are usually discarded as non-medicinal parts, even though they have a large biomass and exhibit therapeutic properties. Thus, it is crucial to investigate metabolites of different parts of Aconitum carmichaelii and explore the relationship between metabolites and toxicity to unleash the utilization potential of the stems and leaves. AIM OF THE STUDY: Using plant metabolomics, we aim to correlate different metabolites in various parts of Aconitum carmichaelii with toxicity, thereby screening for toxicity markers. This endeavor seeks to offer valuable insights for the development of Aconitum carmichaelii stem and leaf-based applications. MATERIALS AND METHODS: UHPLC-Q-Orbitrap MS/MS-based plant metabolomics was employed to analyze metabolites of the different parts of Aconitum carmichaelii. The cardiotoxicity and hepatotoxicity of the extracts from different parts of Aconitum carmichaelii were also investigated using zebrafish as animal model. Toxicity markers were subsequently identified by correlating toxicity with metabolites. RESULTS: A total of 113 alkaloids were identified from the extracts of various parts of Aconitum carmichaelii, with 64 different metabolites in stems and leaves compared to daughter root (Fuzi), and 21 different metabolites in stems and leaves compared to mother root (Wutou). The content of aporphine alkaloids in the stems and leaves of Aconitum carmichaelii is higher than that in the medicinal parts, while the content of the diester-diterpenoid alkaloids is lower. Additionally, the medicinal parts of Aconitum carmichaelii exhibited cardiotoxicity and hepatotoxicity, while the stems and leaves have no obvious toxicity. Finally, through correlation analysis and animal experimental verification, mesaconitine, deoxyaconitine, and hypaconitine were used as toxicity markers. CONCLUSION: Given the low toxicity of the stems and leaves and the potential efficacy of aporphine alkaloids, the stems and leaves of Aconitum carmichaelii hold promise as a valuable medicinal resource warranting further development.


Assuntos
Aconitum , Medicamentos de Ervas Chinesas , Animais , Aconitum/toxicidade , Alcaloides/metabolismo , Aporfinas/metabolismo , Cardiotoxicidade , Doença Hepática Induzida por Substâncias e Drogas , Diterpenos/metabolismo , Medicamentos de Ervas Chinesas/toxicidade , Medicamentos de Ervas Chinesas/metabolismo , Folhas de Planta , Raízes de Plantas , Espectrometria de Massas em Tandem , Peixe-Zebra
16.
Nat Prod Res ; 38(1): 85-90, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-35913407

RESUMO

Nine diterpenoid alkaloids were isolated from Aconitum georgei Comber belonging to the genus Aconitum in Ranunculaceae family. Their structures were determinated by using HR-ESI-MS and 1 D/2D NMR spectra as geordine (1), yunaconitine (2), chasmanine (3), crassicauline A (4), forestine (5), pseudaconine (6), 14-acetylalatisamine (7), austroconitine B (8), and talatisamine (9). Among them, compound 1 is a previously undescribed aconitine-type C19-diterpenoid alkaloid, and compounds 3, and 5-9 have not previously been isolated from this species. The results of in vitro experiments indicated that new compound 1 possesses mild anti-inflammatory activity, which inhibited the production of NO in LPS-activated RAW 264.7 cells with an inhibition ratio of 29.75% at 50 µM.


Assuntos
Aconitum , Alcaloides , Diterpenos , Medicamentos de Ervas Chinesas , Aconitum/química , Alcaloides/química , Espectroscopia de Ressonância Magnética , Medicamentos de Ervas Chinesas/química , Diterpenos/química , Estrutura Molecular , Raízes de Plantas/química
17.
Phytochemistry ; 223: 114115, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710377

RESUMO

A total of twenty-two diterpenoid alkaloids, including ten unprecedented ones, namely refractines C-L, were isolated from the roots of Aconitum refractum (Finet et Gagnep.) Hand.-Mazz. Refractine C was the first example of a natural diterpenoid alkaloid wherein C-19 is linked to N position by an oxaziridine ring. Refractine L was a rare glycosidic diterpenoid alkaloid with fructofuranoside. Most of the isolated compounds obtained from a previous study were screened for their anti-inflammatory and myocardial protective activities. The autophagy-inducing effects of some of these compounds on RAW 264.7 cells were evaluated by assessing the expression of microtubule-associated protein 1 light chain 3 (LC3-II/LC3-I). Results revealed that some compounds exerted varying levels of inhibitory effects on the proliferative activity of RAW 264.7 cells.


Assuntos
Aconitum , Alcaloides , Autofagia , Diterpenos , Aconitum/química , Camundongos , Animais , Autofagia/efeitos dos fármacos , Células RAW 264.7 , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , Alcaloides/química , Diterpenos/farmacologia , Diterpenos/química , Diterpenos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Raízes de Plantas/química
18.
Gene ; 920: 148529, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38703864

RESUMO

Isopentenyl diphosphate isomerase (IDI), a key enzyme in the biosynthetic pathway of diterpenoid alkaloids (DAs), plays an essential regulatory role in the synthesis and accumulation of DAs. In this study, the coding sequence (CDS) of AcIDI1 was isolated from the mother roots of Aconitum carmichaelii Debx. (GeneBank accession number OR915879). Bioinformatics analysis showed that the CDS of AcIDI1 was 894 bp, encoding a protein with 297 amino acids and the putative protein localized in the chloroplast. AcIDI1 exhibited significant homology with sequences encoding IDI in other species, and was most closely related to Aconitum vilmorinianum. Furthermore, the fusion protein has been successfully expressed in Escherichia coli (E. coli), providing a basis for future functional studies of AcIDI1. The expression pattern of AcIDI1 was analyzed by real-time quantitative PCR (qPCR), which demonstrates that AcIDI1 is a tissue-specific gene in the roots of A. carmichaelii and exhibits high expression in both daughter and mother roots. By comparing the expression levels of AcIDI1 in three tissues of the roots of A. carmichaelii at different growth stages, we propose that the mother roots (MRs) are the centers of resources allocation. The roots of A. carmichaelii continuously absorb the energy from external environment, while resources transfer behavior from MRs to both daughter roots (DRs) and axillary buds (ABs) occurs as the plant grows. This study establishes a foundation for applying the IDI gene to regulate the biosynthesis and accumulation of DAs in A. carmichaelii.


Assuntos
Aconitum , Alcaloides , Diterpenos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Raízes de Plantas , Aconitum/genética , Aconitum/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Diterpenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alcaloides/metabolismo , Alcaloides/biossíntese , Filogenia , Escherichia coli/genética , Escherichia coli/metabolismo
19.
Brain Res ; 1842: 149098, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942350

RESUMO

Ischemic stroke (IS) remains one of the most serious threats to human life. Early blood-brain barrier damage (BBB) is the cause of parenchymal cell damage. Repair of the structure and function of the BBB is beneficial for the treatment of IS. The traditional prescription ginseng aconitum decoction (GAD) has a long history in the treatment of cardiovascular and cerebrovascular diseases, however, the effect of GAD on the BBB disruption and underlying mechanisms remains largely unknown. To address these issues, in vitro models of BBB were established with brain endothelial cells (bEnd.3). We found that GAD reduced the leakage of the fluorescent probe FITC-dextran (P < 0.01) and increased the expression of tight junction proteins (Claudin-5, ZO-1) (P < 0.05) in the BBB model in vitro. Furthermore, to investigate the BBB protective effects of GAD in vivo. A total of 25 male C57/BL6 mice (20 - 22 g) were randomly divided into 5 groups (n = 5 per group): (1) Sham group (saline), (2) MCAO group (saline), (3) MCAO + CG group (Chinese ginseng 8 mg/kg/day), (4) MCAO + AC group (aconite 8 mg/kg/day), (5) MCAO + GAD group (GAD 8 mg/kg/day).We constructed IS model in mice and found that GAD treatment reduced IgG leakage (P < 0.05), up-regulated the expression of tight junction proteins Claudin-5, Occludin, and ZO-1 (P < 0.05). Further mechanism study showed that fatty acid oxidation (FAO) of vascular endothelial cells is involved in the protection of the BBB after IS, and GAD regulates FAO (P < 0.05) to protect BBB. In addition, we found the effect of GAD was stronger than that of Chinese ginseng (CG) (P < 0.05) and aconite (AC) (P < 0.01) alone. We concluded that GAD ameliorated the BBB dysfunction by regulating FAO involving vascular endothelial cells after IS. At the same time, the prescription is more effective than single traditional Chinese medicine.

20.
Heliyon ; 10(2): e24008, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293428

RESUMO

Cerebral ischemic stroke (CIS) is a kind of acute cerebrovascular disease with fast onset, low-cure rate, and high case-fatality rate. The application of Aconitum coreanum on CIS was recorded in many ancient books in China with it mechanism and effective components unclear. This study aimed to analyze the potential mechanism and effetvie components of A. coreanum on treating CIS. Neurological function score, cerebral infarction rate, and inflammatory indicators were applied to evaluate the efficacy of A. coreanum on gerbils with CIS. The prototype compounds in A. coreanum which were absorbed into blood was analyzed and identified by Ultra high performance liquid chromatography-Q exactive focus-Mass spectrometer (UPLC-QE-MS). And bioinformatics analysis was used to predict their potential targets or pathways of action. Western blotting and immunofluorescence were adopted to validate the targets or pathway with high relation. After treatment with A. coreanum, the neurological function status of gerbils with CIS was significantly improved, the ischemic area of the brain and the levels of inflammatory indicators significantly reduced. 22 prototype compounds in A. coreanum absorbed into blood were identified mainly including C-20 and C-19 diterpenoid alkaloids. Gene ontology (GO) function enrichment analysis illustrated that A. coreanum acted on protein phosphorylation, receptor complexes, protein kinase activity, and inflammatory response to impove CIS. The kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis results revealed that PI3K/Akt signaling pathway was a key pathway. Western blotting and immunofluorescence validated that A. coreanum acted on PI3K/Akt signaling pathway. In conclusion, A. coreanum improved the inflammantory condition in CIS by acting on PI3K/Akt signaling pathway and the effective components were the diterpenoid alkaloids in it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA