Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 597: 115-121, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35134609

RESUMO

Radiotherapy is commonly used to treat oral squamous cell carcinoma (OSCC), and radioresistance is a critical factor resulting in poor outcomes. Several genes have been reported to be therapeutic targets for radioresistance; however, the involvement of chromatin accessibility in radioresistance has not been clarified in OSCC cells. Accordingly, in this study, we evaluated chromatin accessibility in radioresistant (HSC-3) and radiosensitive (KOSC-2) cells, identified from nine OSCC cell lines using clonogenic survival assays after irradiation. Chromatin accessibility in radioresistant OSCC cells was assessed using assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq). Gene expression was evaluated by quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) and immunoblot analysis. Viability was assessed by MTS assay. We found 1273 peaks (open chromatin regions by ATAC-seq) related to 8 Gy irradiation in HSC-3 but not KOSC-2 cells, among which 235 genes located around the chromatin open peaks were identified by ChIPpeakAnno analysis. Subsequently, 12 genes were selected as signal transduction-related genes by Gene Ontology analysis, and gene expression was confirmed by RT-qPCR. Among these genes, adenylate cyclase 2 (ADCY2) was significantly upregulated after treatment with irradiation in HSC-3 but not KOSC-2 cells. To further evaluate ADCY2 function in radioresistant cells, we performed ADCY2 knockdown by transfection of HSC-3 cells with small interfering RNA (siADCY2). Cell viability after irradiation was significantly decreased in siADCY2-transfected cells compared with that in control cells. These results suggested that ADCY2 expression was related to the open chromatin region in radioresistant OSCC cells and that ADCY2 may have therapeutic efficacy when used in combination with radiotherapy in patients with OSCC.

2.
Mol Metab ; 74: 101757, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348738

RESUMO

OBJECTIVE: Free fatty acid receptor 1 (FFAR1) is highly expressed in enteroendocrine cells of the small intestine and pancreatic beta cells, where FFAR1 agonists function as GLP-1 and insulin secretagogues, respectively. Most efficacious are so-called second-generation synthetic agonists such as AM5262, which, in contrast to endogenous long-chain fatty acids are able to signal through both IP3/Ca2+ and cAMP pathways. Whereas IP3 signaling is to be expected for the mainly Gq-coupled FFAR1, the mechanism behind FFAR1-induced cAMP accumulation remains unclear, although originally proposed to be Gs mediated. METHODS AND RESULTS: When stimulated with AM5262, we observe that FFAR1 can activate the majority of the Gα proteins, except - surprisingly - members of the Gs family. AM5262-induced FFAR1-mediated transcriptional activation through cAMP response element (CREB) was blocked by the specific Gq inhibitor, YM253890. Furthermore, in Gq-deficient cells no CREB signal was observed unless Gq or G11 was reintroduced by transfection. By qPCR we determined that adenylate cyclase 2 (Adcy2) was highly expressed and enriched relative to the nine other Adcys in pro-glucagon expressing enteroendocrine cells. Co-transfection with ADCY2 increased the FFAR1-induced cAMP response 4-5-fold in WT HEK293 cells, an effect fully inhibited by YM253890. Moreover, co-transfection with ADCY2 had no effect in Gq-deficient cells without reintroduction of either Gq or G11. Importantly, although both AM5262/FFAR1 and isoproterenol/ß2 adrenergic receptor (ß2AR) induced cAMP production was lost in Gs-deficient cells, only the ß2AR response was rescued by Gs transfection, whereas co-transfection with ADCY2 was required to rescue the FFAR1 cAMP response. In situ hybridization demonstrated a high degree of co-expression of ADCY2 and FFAR1 in enteroendocrine cells throughout the intestine. Finally, in the enteroendocrine STC-1 and GLUTag cell lines AM5262-induced cAMP accumulation and GLP-1 secretion were both blocked by YM253890. CONCLUSIONS: Our results show that Gq signaling is responsible not only for the IP3/Ca2+ but also the cAMP response, which together are required for the highly efficacious hormone secretion induced by second-generation FFAR1 agonists - and that ADCY2 presumably mediates the Gq-driven cAMP response.


Assuntos
Adenilil Ciclases , Ácidos Graxos não Esterificados , Humanos , Células HEK293 , Receptores Acoplados a Proteínas G/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA