Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Environ Manage ; 369: 122341, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39236613

RESUMO

Thermochemical treatment is rapidly emerging as an alternative method for the management of stabilised sewage sludges (biosolids) to effectively reduce waste volume, degrade contaminants, and generate valuable products, particularly biochar and hydrochar. Biosolids-derived char has a relatively high concentration of heavy metals compared with agricultural chars but is still applied to land due to its beneficial properties and ability to retain metals. However, non-agricultural applications can provide additional economic and environmental benefits, promote sustainability and support a circular economy. This review identifies extensive non-agricultural opportunity for biosolids biochar, including adsorption, catalysis, energy storage systems, biological process enhancement, and as additives for rubber compounding and construction. Biosolids chars have received limited attention vs agricultural char, and we draw on both areas of literature, as well as evaluating differences between agricultural and biosolids chars. A key opportunity for biosolids biochar in comparison with other materials and agricultural chars is its sustainable and low-cost nature, relatively high metals content, improving catalyst properties, and ability to modify in various stages to tune it to specific applications. The specific opportunities for hydrochar have only received limited attention. Research needs to include better understanding of the benefits and limitations for specific applications, as well as adjacent drivers, including society, regulation, and market and economics.

2.
Ecotoxicol Environ Saf ; 251: 114509, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36621032

RESUMO

Bacillus subtilis as microbial fertilizers contribute to avoiding the harmful effects of traditional agricultural fertilizers and pesticides. However, there are many restrictions on the practical application of fertilizers. In this study, microbial biochar formulations (BCMs) were prepared by loading biochar with B. subtilis SL-44. Pot experiments were conducted to evaluate the effects of the BCMs on soil fertility, Fusarium wilt control, and radish plant growth. The application of BCMs dramatically improved soil properties and favored plant growth. Compared with SL-44 and biochar treatments, the BCMs treatments increased radish plant physical-chemical properties and activities of several enzymes in the soil. What's more, Fusarium wilt incidence had decreased by 59.88%. In addition, the BCMs treatments exhibited a significant increase in the abundance of bacterial genera in the rhizosphere soil of radish. Therefore, this study demonstrated that BCMs may be an eco-friendly strategy for improving soil fertility, reducing Fusarium wilt, and promoting radish plant growth.


Assuntos
Fusarium , Raphanus , Solo/química , Bacillus subtilis , Fertilizantes/análise , Microbiologia do Solo , Rizosfera
3.
Sensors (Basel) ; 24(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38203098

RESUMO

The synthetic aperture radar (SAR) is a type of active radar that can obtain polarization scattering information of ground objects, which is an important supplement to optical remote sensing. This paper designs a high-precision quantitative SAR system that combines radiation and polarization calibration processing to achieve a subtle perception of the changes in soil moisture and straw coverage. In Yushu, Jilin, we conducted the first S-band agricultural remote sensing application experiment. The backscattering coefficient was measured under different water content and straw coverage conditions, and the results showed that the backscattering coefficient increased by about 2 dB and 6 dB, respectively. We estimated that the soil water content increased by about 0.01 cm3/cm3, which was consistent with the theoretical analysis. The polarization scattering characteristics also showed significant differences under different straw coverage. The results indicated that S-band quantitative SAR had an excellent response ability to water content and straw coverage, which provided a technical basis for further radar agricultural applications in the future.

4.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674420

RESUMO

Nitrogen-fixing bacteria execute biological nitrogen fixation through nitrogenase, converting inert dinitrogen (N2) in the atmosphere into bioavailable nitrogen. Elaborating the molecular mechanisms of orderly and efficient biological nitrogen fixation and applying them to agricultural production can alleviate the "nitrogen problem". Azotobacter vinelandii is a well-established model bacterium for studying nitrogen fixation, utilizing nitrogenase encoded by the nif gene cluster to fix nitrogen. In Azotobacter vinelandii, the NifA-NifL system fine-tunes the nif gene cluster transcription by sensing the redox signals and energy status, then modulating nitrogen fixation. In this manuscript, we investigate the transcriptional regulation mechanism of the nif gene in autogenous nitrogen-fixing bacteria. We discuss how autogenous nitrogen fixation can better be integrated into agriculture, providing preliminary comprehensive data for the study of autogenous nitrogen-fixing regulation.


Assuntos
Azotobacter vinelandii , Fixação de Nitrogênio , Fixação de Nitrogênio/genética , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nitrogenase/genética , Nitrogenase/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Genes Bacterianos , Nitrogênio/metabolismo , Regulação Bacteriana da Expressão Gênica
5.
Sensors (Basel) ; 23(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36616628

RESUMO

Precise pear detection and recognition is an essential step toward modernizing orchard management. However, due to the ubiquitous occlusion in orchards and various locations of image acquisition, the pears in the acquired images may be quite small and occluded, causing high false detection and object loss rate. In this paper, a multi-scale collaborative perception network YOLOv5s-FP (Fusion and Perception) was proposed for pear detection, which coupled local and global features. Specifically, a pear dataset with a high proportion of small and occluded pears was proposed, comprising 3680 images acquired with cameras mounted on a ground tripod and a UAV platform. The cross-stage partial (CSP) module was optimized to extract global features through a transformer encoder, which was then fused with local features by an attentional feature fusion mechanism. Subsequently, a modified path aggregation network oriented to collaboration perception of multi-scale features was proposed by incorporating a transformer encoder, the optimized CSP, and new skip connections. The quantitative results of utilizing the YOLOv5s-FP for pear detection were compared with other typical object detection networks of the YOLO series, recording the highest average precision of 96.12% with less detection time and computational cost. In qualitative experiments, the proposed network achieved superior visual performance with stronger robustness to the changes in occlusion and illumination conditions, particularly providing the ability to detect pears with different sizes in highly dense, overlapping environments and non-normal illumination areas. Therefore, the proposed YOLOv5s-FP network was practicable for detecting in-field pears in a real-time and accurate way, which could be an advantageous component of the technology for monitoring pear growth status and implementing automated harvesting in unmanned orchards.


Assuntos
Pyrus , Fontes de Energia Elétrica , Iluminação , Reconhecimento Psicológico , Percepção
6.
Molecules ; 27(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500680

RESUMO

To broaden the range of measurable pesticides for stable isotope analysis (SIA), we tested whether SIA of the anthranilic diamides cyantraniliprole (CYN) and chlorantraniliprole (CHL) can be achieved under elemental analyzer/isotope ratio mass spectrometry with compound purification in high-performance liquid chromatography (HPLC). Using this method, carbon isotope compositions were measured in pesticide residues extracted from plants (lettuce) grown indoors in potting soil that were treated with 500 mg/kg CHL and 250 mg/kg CYN and were followed up for 45 days. Our results show that the CYN and CHL standard materials did not have significant isotope differences before and after clean-up processing in HPLC. Further, when applied to the CYN product and CHL product in soil, stable isotope differences between the soil and plant were observed at <1.0‱ throughout the incubation period. There was a slight increase in the variability of pesticide isotope ratio detected with longer-term incubation (CHL, on average 1.5‱). Overall, we measured the carbon isotope ratio of target pesticides from HPLC fraction as the purification and pre-concentration step for environmental and biological samples. Such negligible isotopic differences in pesticide residues in soils and plants 45 days after application confirmed the potential of CSIA to quantify pesticide behavior in environments.


Assuntos
Resíduos de Praguicidas , Praguicidas , Cromatografia Líquida de Alta Pressão/métodos , Praguicidas/análise , Isótopos de Carbono/análise , Espectrometria de Massas/métodos , Solo/química , Resíduos de Praguicidas/análise
7.
Sensors (Basel) ; 20(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164200

RESUMO

Deep Learning (DL) is the state-of-the-art machine learning technology, which shows superior performance in computer vision, bioinformatics, natural language processing, and other areas. Especially as a modern image processing technology, DL has been successfully applied in various tasks, such as object detection, semantic segmentation, and scene analysis. However, with the increase of dense scenes in reality, due to severe occlusions, and small size of objects, the analysis of dense scenes becomes particularly challenging. To overcome these problems, DL recently has been increasingly applied to dense scenes and has begun to be used in dense agricultural scenes. The purpose of this review is to explore the applications of DL for dense scenes analysis in agriculture. In order to better elaborate the topic, we first describe the types of dense scenes in agriculture, as well as the challenges. Next, we introduce various popular deep neural networks used in these dense scenes. Then, the applications of these structures in various agricultural tasks are comprehensively introduced in this review, including recognition and classification, detection, counting and yield estimation. Finally, the surveyed DL applications, limitations and the future work for analysis of dense images in agriculture are summarized.

8.
Pest Manag Sci ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030887

RESUMO

BACKGROUND: Crop diseases can lead to significant yield losses and food shortages if not promptly identified and managed by farmers. With the advancements in convolutional neural networks (CNN) and the widespread availability of smartphones, automated and accurate identification of crop diseases has become feasible. However, although previous studies have achieved high accuracy (>95%) under laboratory conditions (Lab) using mixed data sets of multiple crops, these models often falter when deployed under field conditions (Field). In this study, we aimed to evaluate disease identification accuracy under Lab, Field, and Mixed (Lab and Field) conditions using an assembled data set encompassing 14 diseases of apple (Malus × domestica Borkh.), potato (Solanum tuberosum L.), and tomato (Solanum lycopersicum L.). In addition, we investigated the impact of model architectures, parameter sizes, and crop-specific models (CSMs) on accuracy, using DenseNets, ResNets, MobileNetV3, EfficientNet, and VGG Nets. RESULTS: Our results revealed a decrease in accuracy across all models from Lab (98.22%) to Mixed (91.76%) to Field (71.55%) conditions. Interestingly, disease classification accuracy showed minimal variation across model architectures and parameter sizes: Lab (97.61-98.76%), Mixed (90.76-92.31%), and Field (68.56-73.81%). Although CSMs were found to reduce inter-crop disease misclassifications, they also led to a slight increase in intra-crop misclassifications. CONCLUSION: Our findings underscore the importance of enriching data representation and volumes over employing new model architectures. Furthermore, the need for more field-specific images was highlighted. Ultimately, these insights contribute to the advancement of crop disease identification applications, facilitating their practical implementation in farmer's fields. © 2024 Society of Chemical Industry.

9.
Microorganisms ; 12(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38930489

RESUMO

Amidst worsening climate change, drought stress imperils global agriculture, jeopardizing crop yields and food security, thereby necessitating the urgent exploration of sustainable methods like biopriming for the harnessing of beneficial microorganisms to bolster plant resilience. Recent research has revealed diverse biological compounds with versatile applications produced by Schizophyllum commune, rendering this fungus as a promising contender for biopriming applications. For the first time, this study aimed to investigate the potential of S. commune exo- (EPSH) and intra-polysaccharides (IPSH) isolated from two strains-Italian (ITA) and Serbian (SRB)-under submerged cultivation to enhance the resilience of Pisum sativum L. seeds through the biopriming technique. Testing of the seed quality for the bioprimed, hydroprimed, and unprimed seeds was conducted using a germination test, under optimal and drought conditions, while characterization of the PSHs included FTIR analysis, microanalysis, and determination of total protein content (TPC). The FTIR spectra of EPSH and IPSH were very similar but revealed the impurities, while microanalysis and TPC confirmed a different presence of proteins in the isolated PSHs. In optimal conditions, the IPSH SRB increased germination energy by 5.50% compared to the control; however, the highest percentage of germination (94.70%) was shown after biopriming with the PSH isolated from the ITA strain. Additionally, all assessed treatments resulted in a boost in seedling growth and biomass accumulation, where the ITA strain demonstrated greater effectiveness in optimal conditions, while the SRB strain showed superiority in drought conditions. The drought tolerance indices increased significantly in response to all examined treatments during the drought, with EPSH ITA (23.00%) and EPSH SRB (24.00%) demonstrating the greatest effects. Results of this preliminary study demonstrate the positive effect of isolated PSH, indicating their potential as biopriming agents and offering insights into novel strategies for agricultural resilience.

10.
Environ Pollut ; 361: 124841, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39209058

RESUMO

Torrefaction is commonly used to improve biomass properties, applications, and economy. The characteristics and subsequent applications of torrefied biomass are largely contingent on the organic compounds in parent biomass and their evolution during torrefaction. Yet, the evolution of organic compounds in biomass particularly minor components (e.g., polyphenols) is far less investigated for torrefaction. To address such issues, a superheated steam (SHS) boosted torrefaction process at different temperatures (200, 250, and 300 °C) and residence times (15, 30, and 60 min) was performed on spent coffee ground (SCG), which is an emerging biowaste and is rich in various organic compounds. Results found that both temperature and residence time determine SHS torrefaction performance. SHS torrefaction could effectively remove volatile matters to upgrade SCG for solid fuel. The relatively high content of N and S in torrefied SCG may negatively affect fuel quality but may benefit its adsorption of environmental pollutants. SHS boosted torrefaction could facilitate cellulose and lipids degradation compared to conventional torrefaction. Efficient reduction/removal of labile carbon and ecotoxic chemicals (e.g., phenols and caffeine) in SCG was successfully achieved with SHS torrefaction. As a result, SHS-torrefied SCG with higher biostability and lower phytotoxicity was evaluated as soil amendments and additives to soilless growing substrate. Implications for subsequent application by revealing the evolution of organic compounds during SHS torrefaction were discussed. This study highlighted the potentiality of SHS torrefaction as a pretreatment of biomass for versatile applications.

11.
Waste Manag Res ; 31(9): 925-36, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23836101

RESUMO

A study was conducted to investigate the levels of plant nutrients, heavy metals, parasites and fecal coliform bacteria in Bangkok-produced sewage sludge and finished compost products for potential agricultural application, as well as to compare the quality of compost under different composting conditions. The results indicated that digested sewage sludge had high fertilizing values for organic matter (19.01 ± 0.09%), total nitrogen (2.17 ± 0.07%), total phosphorus (2.06 ± 0.06%) and total potassium (1.16 ± 0.22%), but it was contaminated with human pathogens, including fecal coliform bacteria, viable helminthes egg and active forms of parasite cysts. Thus, fresh sewage sludge should not be disposed on land unless it has undergone pathogen reduction. It is proven that the quality of the sludge mixed with grass clippings at a ratio of 6:1 volume/volume after having passed a windrow composting process for 8 weeks can be classified as class A biosolids as the levels of remaining fecal coliforms were < 3 most probable number g(-1) dry solid and all human parasites were destroyed. Concentrations of organic matter, total nitrogen, total phosphorus and total potassium in the finished compost were 16.53 ± 1.25%, 1.39 ± 0.06%, 0.42 ± 0.10% and 1.53 ± 0.05% respectively. The total copper concentration was rather high (2291.31 ± 121.77 mg kg(-1)), but all heavy metal concentrations were also well below the United States Environmental Protection Agency pollutant limits for land application. The finished compost products can be considered as a soil conditioner as they have relatively low essential plant nutrient concentrations. It is recommended to be initially used for gardening and landscaping to ensure safety utilization.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/análise , Reciclagem/métodos , Esgotos/química , Gerenciamento de Resíduos/métodos , Agricultura/métodos , Animais , Helmintos/isolamento & purificação , Esgotos/microbiologia , Esgotos/parasitologia , Solo/química , Solo/parasitologia , Microbiologia do Solo
12.
Plant Physiol Biochem ; 205: 108172, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956611

RESUMO

Phosphorus-based nanomaterials (PNMs) have been reported to have substantial promise for promoting plant growth, improving plant tolerance mechanisms, and increasing resistance to pathogenic organisms. Recent scientific investigation has demonstrated that utilizing PNMs can enhance plant physiological growth, photosynthetic pigments, antioxidant system, metabolism, nutrient absorption, rhizosphere secretion, and soil nutrients activation. Previous research on PNMs mostly concentrated on calcium phosphate, zeolite, and chitosan, with little systematic summarization, demanding a thorough evaluation of PNMs' broader uses. In our current review article, we address the knowledge gap by classifying PNMs according to green synthesis methods and the valence state of phosphorus while elucidating the underlying mechanisms through which these PNMs facilitate plant growth. In addition, we also targeted some strategies to improve the bioavailability of PNMs, offering valuable insights for the future design and safe implementation of PNMs in agricultural practices.


Assuntos
Nanoestruturas , Fosfatos , Fosfatos/metabolismo , Fósforo/metabolismo , Fertilizantes/análise , Agricultura , Solo , Plantas/metabolismo
13.
Sci Total Environ ; 869: 161562, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638990

RESUMO

In this research, the performance of biochar-enhanced agricultural application of food waste liquid digestate for celery cultivation was investigated to reveal its utilization potential and environmental impacts. Liquid digestate demonstrated a good agronomic effect, with a significant fertilization efficiency of 42.3 % during celery growth. With liquid digestate addition (270 t/ha), the same level of harvested celery yield of 15,345 kg/ha was achieved compared with chemical fertilizer utilization of 15,495 kg/ha. Based on the same nitrogen input, the liquid digestate application increased the sugar content of the harvested celery (7 %-15 %) while decreasing the nitrate content (29 %-45 %). The harvested celery with liquid digestate application indicated higher contents of total nitrogen, total phosphorus and total potassium levels than those in the chemical fertilizer group. Liquid digestate as a fertilizer supplemented the soil with nutrients, including phosphorus, potassium and organic matter, but did not cause excessive accumulation. The inorganic nitrogen content of the leachate increased as applied liquid digestate increased. However, it remained 20 %-60 % lower than that of chemical fertilizer at the same fertilization efficiency. After applying liquid digestate, there was no significant increase was observed in soil salinity. The coupled addition of biochar helps to improve the overall effects of liquid digestate for agricultural application and reduce negative environmental impacts. This study demonstrates that returning liquid digestate to agricultural fields as fertilizer is an environmentally and economically beneficial practice.


Assuntos
Apium , Eliminação de Resíduos , Fertilizantes/análise , Anaerobiose , Solo/química , Nitrogênio/análise , Verduras , Fósforo , Potássio
14.
ACS Appl Bio Mater ; 6(11): 4972-4987, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37910790

RESUMO

The use of nanometal oxides in nanoagronomy has garnered considerable attention due to their excellent antifungal and plant growth promotion properties. Hybrid nanometal oxides, which combine the strengths of individual nanomaterials, have emerged as a promising class of materials. In this study, nanomagnesium oxide (n-MgO) and hybrid magnetic nanomagnesium oxide (m/n-MgO) were successfully synthesized via the ultrasound-mediated sol-gel method. Characterization results, including TGA, XRD, VSM, and FTIR, confirmed the successful synthesis of m/n-MgO. Both n-MgO and m/n-MgO underwent antifungal assays and plant growth promotion ability studies, benchmarked against the conventional fungicide-copper oxychloride. This study bridges a significant gap by simultaneously reporting the antifungal properties of both n-MgO and m/n-MgO and their impact on plant growth. The disc diffusion assay suggested that the antifungal activity of n-MgO and m/n-MgO against F. oxysporum was inversely related to the particle size. Notably, n-MgO exhibited superior antifungal performance (lower minimum inhibitory concentration (MIC)) and sustained efficacy compared with m/n-MgO, owing to distinct antifungal mechanisms. Nanorod-shaped MgO, with a smaller size (8.24 ± 5.61 nm) and higher aspect ratio, allowed them to penetrate the fungal cell wall and cause intercellular damage. In contrast, cubical m/n-MgO, with a larger size (20.95 ± 9.99 nm) and lower aspect ratio, accumulate on the fungal cell wall surface, disrupting the wall integrity, albeit less effectively against F. oxysporum. Moreover, in plant growth promotion studies, m/n-MgO-treated samples exhibited a 15.7% stronger promotion effect compared to n-MgO at their respective MICs. In addition, both n-MgO and m/n-MgO outperformed copper oxychloride in terms of antifungal and plant growth promoting activities. Thus, m/n-MgO presents a promising alternative to conventional copper-based fungicides, offering dual functionality as a fungicide and plant growth promoter, while the study also delves into the antifungal mechanisms at the intracellular level, enhancing its novelty.


Assuntos
Fungicidas Industriais , Nanocompostos , Óxido de Magnésio/farmacologia , Fungicidas Industriais/farmacologia , Antifúngicos/farmacologia , Óxidos , Agricultura , Fenômenos Magnéticos
15.
Sci Total Environ ; 886: 163968, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37164068

RESUMO

Biochar can be an effective carrier for microbial inoculants because of its favourable properties promoting microbial life. In this review, we assess the effectiveness of biochar as a microbial carrier for agricultural and environmental applications. Biochar is enriched with organic carbon, contains nitrogen, phosphorus, and potassium as nutrients, and has a high porosity and moisture-holding capacity. The large number of active hydroxyl, carboxyl, sulfonic acid group, amino, imino, and acylamino hydroxyl and carboxyl functional groups are effective for microbial cell adhesion and proliferation. The use of biochar as a carrier of microbial inoculum has been shown to enhance the persistence, survival and colonization of inoculated microbes in soil and plant roots, which play a crucial role in soil biochemical processes, nutrient and carbon cycling, and soil contamination remediation. Moreover, biochar-based microbial inoculants including probiotics effectively promote plant growth and remediate soil contaminated with organic pollutants. These findings suggest that biochar can serve as a promising substitute for non-renewable substrates, such as peat, to formulate and deliver microbial inoculants. The future research directions in relation to improving the carrier material performance and expanding the potential applications of this emerging biochar-based microbial immobilization technology have been proposed.


Assuntos
Inoculantes Agrícolas , Poluentes do Solo , Agricultura , Carbono , Carvão Vegetal , Solo/química , Poluentes do Solo/análise
16.
Environ Technol ; : 1-15, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37970842

RESUMO

Sewage sludge requires effective dewatering and high nutrients retention before disposal for agricultural application. Pressurized electro-osmotic dewatering (PEOD) process with low energy consumption can effectively remove water from sludge, but the influences of PEOD process on nutrients for agricultural application still lacks in-depth research. In this study, the influences of PEOD process on nutrients for agricultural application were investigated, including organic matter, nitrogen, phosphorus, potassium and silicon contents. Layered experiments were conducted to investigate the layered variation of nutrients in sludge and to understand the potential change mechanisms. The experimental results showed that PEOD process caused small losses (<10%) of organic matter and total phosphorus (TP) in sludge, but caused 11.2-18.4% loss of total nitrogen (TN). PEOD process also caused 18.6-27.0% loss of total potassium (TK) and over 80% loss of available potassium in sludge, and could weaken the potential salt damage during the agricultural application of sludge. Furthermore, the available phosphorus content of sludge in the anode area increased significantly after the PEOD process, indicating that PEOD process could enhance the phosphorus bioavailability of sludge in the anode area. Besides, PEOD process caused a slight loss of silicon components in sludge, but improved the long-term silicon dissolution and release ability of sludge. This work could expand the knowledge about the influences of PEOD process on sludge nutrients and provide scientific guidance for the agricultural application of PEOD sludge.

17.
J Fungi (Basel) ; 8(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36547573

RESUMO

Numerous studies focused on drug discovery perspective have proved the great potential for exploration of marine-derived fungi to seek bioactive chemicals. Yet, marine-derived fungi are less explored compared to their terrestrial counterparts. Here, 181 fungal strains (134 species) isolated from marine algae and sediment in Chinese intertidal zones were screened to reveal bioactivities using brine shrimp, green peach aphid and plant pathogens as targets. Fermentation supernatants of 85 fungal strains exhibited a high lethality (>70%) of brine shrimp at 24 h, and 14 strains appeared to be acute-toxic as featured by more than 75% mortality at 4 h, indicating efficient insecticidal bioactivity. The crude extracts of 34 strains displayed high toxicity to green peach aphid with more than 70% of mortality at 48 h. For the plant pathogens tested, the inhibitory rates of eight fungal strains affiliated with Alternaria (AS3, AS4), Amphichorda (AS7), Aspergillus (AS14), Chaetomium (AS21), Penicillium (AS46), Purpureocillium (AS55) and Trichoderma (AS67) were equal or higher than that of the positive Prochloraz, and five of them (AS7, AS14, AS21, AS55, AS67) were also strongly toxic to brine shrimp or aphid. Our findings indicate broad potential for exploration of marine-derived fungi as candidate resources to pursue bioactive compounds in controlling agricultural pests and pathogens.

18.
J Hazard Mater ; 428: 128213, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35007970

RESUMO

Pretreatment is widely used in sludge dewatering, however, its potentially impact on the subsequent sludge agricultural applications is often neglected. Here, the potential benefits and risks of the sludge with no pretreatment and with four most commonly used pretreatment methods in sludge agricultural applications were assessed using potted lettuce, an experimental crop. The results show that sewage sludge pretreatment methods can greatly affect its agricultural applications. The application of different pretreatment methods can potentially reduce the harm caused by pathogens. At low dosage (0.2 g kg-1), different sludge fertilizers promoted an increase in crop yield of 14.6% to 49.1%, and the concentrations of heavy metals in the crop and soil were controlled within safe ranges. At high dosage (8 g kg-1), crop yield using pretreated sludge (except anaerobic digestion) decreased by between 32.7% and 57.5%, but heavy metal pollution of both crop and soil increased. In terms of promoting crop growth and reducing heavy metal accumulation, untreated sludge was better than pretreated sludges and sludge with physical pretreatments was better than that with chemical pretreatments. Overall, this study clearly shows that the introduction of pretreatment in sludge dewatering can inevitably impact its agricultural land application.


Assuntos
Metais Pesados , Poluentes do Solo , Fertilizantes/análise , Metais Pesados/análise , Esgotos , Solo , Poluentes do Solo/análise
19.
Sci Total Environ ; 809: 151124, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34695458

RESUMO

The science-informed design of stable carbonaceous materials as 'green' soil amendment will be indispensable for improving the soil fertility and carbon sequestration ability. In this study, a series of biochars were prepared from mineral-rich cellulosic corn straw (C), lignocellulosic pine wood (P), and lignin-rich walnut shell (W) at 500 or 700 °C. Their change of carbon stability after 90-day interaction with two typical soil clay minerals (i.e., kaolinite or montmorillonite) under a field-relevant condition (mass ratio of biochar to soil clay at 1:5) was evaluated as carbon loss (%) determined by the K2CrO7-H2SO4 oxidation method. The spectroscopic analyses demonstrated that the highly graphitized and microporous W-biochars exhibited a high carbon stability (35.6-40.2% C loss) that could be further enhanced in the presence of kaolinite or montmorillonite. This promotion was probably ascribed to the transformation from the aromatic CC/CC functionality to the ester CO and methyl CH configurations on the biochar surface forming stable organo-mineral complexes (i.e., COAl) with the clay minerals. In contrast, a substantial level of labile C fraction was observed in the C- and P-biochars (e.g., 94.8% C loss of P700-M) after incubation with the clay minerals, especially for montmorillonite with high CEC, swelling capacity, and week interlayer bonding. This adverse impact was possibly attributed to the aliphatic CC/CC bonding with low oxidation resistance after co-precipitation with the clay minerals. The results of this study can provide deeper insight into the evolution of physicochemical properties, porous structure, and carbon interactions during long-term biochar application for carbon sequestration and sustainable development.


Assuntos
Carbono , Carvão Vegetal , Sequestro de Carbono , Argila , Minerais , Solo
20.
Waste Manag ; 133: 1-9, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34333376

RESUMO

A novel system for simultaneous biogas upgrading, CO2 sequestration, and biogas slurry decrement was established by adding biomass ash into biogas slurry to form a renewable CO2 mixture absorbent. After CO2 saturation, the CO2-rich mixture absorbent could be applied for plant growth. When the mass ratio of liquid to solid was 4:1, CO2 absorption capacity of this mixture absorbent reached up to 97.33 g-CO2/kg-biomass-ash, which was about 135% higher than that of the biomass ash-water mixture. The highest value of 129.94 g-CO2/kg-biomass-ash was obtained at a liquid-solid ratio of 99:1. When the TS concentration of anaerobic digestion feedstock was higher than 16 wt% and the water content of CO2-rich absorbent was about 50 wt%, more than 80% of biogas slurry can be adsorbed by the biomass ash. If the biomass ash with a CO2 absorption capacity of 100 g-CO2/kg was adopted and its transportation distance was less than 45 km, the biogas upgrading cost could be lower than the global average level (about RMB¥ 0.7/Nm3-biogas) when using the novel system proposed in this study.


Assuntos
Biocombustíveis , Dióxido de Carbono , Biomassa , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA