Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 144: 109243, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995892

RESUMO

Large yellow croaker (Larimichthys crocea) farm industry in China suffered from huge economic loss caused by Pseudomonas plecoglossicida infection. Due to multi-antibiotic resistance, efficient vaccines are urgent to be developed to combat this pathogen. In this study, an inactivated vaccine was developed with an aluminium adjuvant (Alum) plus ginseng stem and leaf saponins (GSLS). As a result, the relative percentage survival (RPS) against P. plecoglossicida was up to 67.8 %. Comparatively, RPS of groups that vaccinated with only inactivated vaccine and vaccine containing Alum or Montanide™ 763A as adjuvant were 21.8 %, 32.2 % and 62.1 %, respectively. Assays for total serum protein and serum lysozyme activity in group vaccinated with inactivated vaccine plus Alum + GSLS adjuvant were significantly higher than that in control group. Moreover, specific antibody in serum elicited a rapid and persistent level. According to the expression of some immune related genes, inactivated vaccine plus Alum + GSLS adjuvant induced a stronger cellular immune response which was vital to defend against P. plecoglossicida. In conclusion, our study demonstrated that the compound Alum and GSLS adjuvant is a potential adjuvant system to develop LYC vaccine.


Assuntos
Panax , Perciformes , Infecções por Pseudomonas , Saponinas , Animais , Alumínio , Vacinas de Produtos Inativados , Saponinas/farmacologia , Adjuvantes Imunológicos/farmacologia , Infecções por Pseudomonas/prevenção & controle , Infecções por Pseudomonas/veterinária , Folhas de Planta
2.
Eur J Immunol ; 48(4): 705-715, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29349774

RESUMO

The effectiveness of many vaccines licensed for clinical use relates to the induction of neutralising antibodies, facilitated by the inclusion of vaccine adjuvants, particularly alum. However, the ability of alum to preferentially promote humoral rather than cellular, particularly Th1-type responses, is not well understood. We demonstrate that alum activates immunosuppressive mechanisms following vaccination, which limit its capacity to induce Th1 responses. One of the key cytokines limiting excessive immune responses is IL-10. Injection of alum primed draining lymph node cells for enhanced IL-10 secretion ex vivo. Moreover, at the site of injection, macrophages and dendritic cells were key sources of IL-10 expression. Alum strongly enhanced the transcription and secretion of IL-10 by macrophages and dendritic cells. The absence of IL-10 signalling did not compromise alum-induced cell infiltration into the site of injection, but resulted in enhanced antigen-specific Th1 responses after vaccination. In contrast to its decisive regulatory role in regulating Th1 responses, there was no significant change in antigen-specific IgG1 antibody production following vaccination with alum in IL-10-deficient mice. Overall, these findings indicate that injection of alum promotes IL-10, which can block Th1 responses and may explain the poor efficacy of alum as an adjuvant for inducing protective Th1 immunity.


Assuntos
Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/farmacologia , Células Dendríticas/imunologia , Interleucina-10/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Células Th1/imunologia , Animais , Células Cultivadas , Escherichia coli/imunologia , Feminino , Interleucina-10/biossíntese , Interleucina-10/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vacinas/imunologia
3.
J Comp Pathol ; 199: 43-50, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36272367

RESUMO

Post-vaccinal sarcomas have been reported in cats and rarely in other domestic mammals, but not in birds. Three village weaver birds (Ploceus cucullatus) presented with poor flying ability and abnormal wing carriage attributable to large, unilateral pectoral masses. All had received at least one dose of autogenous Yersinia pseudotuberculosis vaccine into the affected pectoral muscle 74-408 days previously. Following euthanasia, gross post-mortem examination revealed locally invasive subcutaneous tumours extending through the sternum into the coelomic cavity. Cytology and histology revealed neoplasms of pleomorphic spindloid neoplastic cells with foci of coagulative necrosis and cavitation, sometimes containing faintly refractile non-polarizing granular material, both extracellularly and after phagocytosis by surrounding cells, including multinucleated giant cells. Immunohistochemistry in one bird supported a striated muscle cell origin. Findings of anaplastic sarcoma with intralesional foreign crystalline material resembled typical injection-site sarcomas in cats. This is the first report of presumptive vaccine-associated sarcoma in a non-mammalian species.


Assuntos
Doenças do Gato , Sarcoma , Neoplasias de Tecidos Moles , Yersinia pseudotuberculosis , Animais , Gatos , Neoplasias de Tecidos Moles/veterinária , Sarcoma/veterinária , Aves , Vacinação/veterinária , Mamíferos
4.
FEBS J ; 283(1): 9-24, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26536497

RESUMO

Despite its long record of successful use in human vaccines, the mechanisms underlying the immunomodulatory effects of alum are not fully understood. Alum is a potent inducer of interleukin-1 (IL-1) secretion in vitro in dendritic cells and macrophages via Nucleotide-binding domain and leucine-rich repeat-containing (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome activation. However, the contribution of IL-1 to alum-induced innate and adaptive immune responses is controversial and the role of IL-1α following alum injection has not been addressed. This study shows that IL-1 is dispensable for alum-induced antibody and CD8 T cell responses to ovalbumin. However, IL-1 is essential for neutrophil infiltration into the injection site, while recruitment of inflammatory monocytes and eosinophils is IL-1 independent. Both IL-1α and IL-1ß are released at the site of injection and contribute to the neutrophil response. Surprisingly, these effects are NLRP3-inflammasome independent as is the infiltration of other cell populations. However, while NLRP3 and caspase 1 were dispensable, alum-induced IL-1ß at the injection site was dependent on the cysteine protease cathepsin S. Overall, these data demonstrate a previously unreported role for cathepsin S in IL-1ß secretion, show that inflammasome formation is dispensable for alum-induced innate immunity and reveal that IL-1α and IL-1ß are both necessary for alum-induced neutrophil influx in vivo.


Assuntos
Compostos de Alúmen/farmacologia , Inflamassomos , Interleucina-1alfa/imunologia , Interleucina-1beta/imunologia , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/imunologia , Vacinação , Compostos de Alúmen/administração & dosagem , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL
5.
J Inorg Biochem ; 128: 229-36, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23992993

RESUMO

Aluminium oxyhydroxide, Al(OH)3 is one of few compounds approved as an adjuvant in human vaccines. However, the mechanism behind its immune stimulating properties is still poorly understood. In vitro co-culture of an aluminium adjuvant and the human monocytic cell line THP-1 resulted in reduced cell proliferation. Inhibition occurred at concentrations of adjuvant several times lower than would be found at the injection site using a vaccine formulation containing an aluminium adjuvant. Based on evaluation of the mitochondrial membrane potential, THP-1 cells showed no mitochondrial rupture after co-culture with the aluminium adjuvant, instead an increase in mitochondrial activity was seen. The THP-1 cells are phagocytosing cells and after co-culture with the aluminium adjuvant the phagosomal pathway was obstructed. Primary or early phagosomes mature into phagolysosomes with an internal pH of 4.5 - 5 and carry a wide variety of hydrolysing enzymes. Co-culture with the aluminium adjuvant yielded a reduced level of acidic vesicles and cathepsin L activity, a proteolytic enzyme of the phagolysosomes, was almost completely inhibited. THP-1 cells are an appropriate in vitro model in order to investigate the mechanism behind the induction of a phagocytosing antigen presenting cell into an inflammatory cell by aluminium adjuvants. Much information will be gained by investigating the phagosomal pathway and what occurs inside the phagosomes and to elucidate the ultimate fate of phagocytosed aluminium particles.


Assuntos
Alumínio/farmacologia , Lisossomos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fagossomos/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Catepsina L/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Concentração de Íons de Hidrogênio , Interleucina-1beta/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Fagossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA