Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.107
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(3): 689-708.e20, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33482083

RESUMO

The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a GGGGCC repeat expansion in the C9orf72 gene. We developed a platform to interrogate the chromatin accessibility landscape and transcriptional program within neurons during degeneration. We provide evidence that neurons expressing the dipeptide repeat protein poly(proline-arginine), translated from the C9orf72 repeat expansion, activate a highly specific transcriptional program, exemplified by a single transcription factor, p53. Ablating p53 in mice completely rescued neurons from degeneration and markedly increased survival in a C9orf72 mouse model. p53 reduction also rescued axonal degeneration caused by poly(glycine-arginine), increased survival of C9orf72 ALS/FTD-patient-induced pluripotent stem cell (iPSC)-derived motor neurons, and mitigated neurodegeneration in a C9orf72 fly model. We show that p53 activates a downstream transcriptional program, including Puma, which drives neurodegeneration. These data demonstrate a neurodegenerative mechanism dynamically regulated through transcription-factor-binding events and provide a framework to apply chromatin accessibility and transcription program profiles to neurodegeneration.


Assuntos
Proteína C9orf72/metabolismo , Expansão das Repetições de DNA/genética , Degeneração Neural/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Axônios/metabolismo , Proteína C9orf72/genética , Morte Celular , Células Cultivadas , Córtex Cerebral/patologia , Cromatina/metabolismo , Dano ao DNA , Modelos Animais de Doenças , Drosophila , Camundongos Endogâmicos C57BL , Degeneração Neural/patologia , Estabilidade Proteica , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo
2.
Cell ; 184(18): 4680-4696.e22, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34380047

RESUMO

Mutations causing amyotrophic lateral sclerosis (ALS) often affect the condensation properties of RNA-binding proteins (RBPs). However, the role of RBP condensation in the specificity and function of protein-RNA complexes remains unclear. We created a series of TDP-43 C-terminal domain (CTD) variants that exhibited a gradient of low to high condensation propensity, as observed in vitro and by nuclear mobility and foci formation. Notably, a capacity for condensation was required for efficient TDP-43 assembly on subsets of RNA-binding regions, which contain unusually long clusters of motifs of characteristic types and density. These "binding-region condensates" are promoted by homomeric CTD-driven interactions and required for efficient regulation of a subset of bound transcripts, including autoregulation of TDP-43 mRNA. We establish that RBP condensation can occur in a binding-region-specific manner to selectively modulate transcriptome-wide RNA regulation, which has implications for remodeling RNA networks in the context of signaling, disease, and evolution.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Bases , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Homeostase , Humanos , Mutação/genética , Motivos de Nucleotídeos/genética , Transição de Fase , Mutação Puntual/genética , Poli A/metabolismo , Ligação Proteica , Multimerização Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Deleção de Sequência
3.
Cell ; 179(1): 147-164.e20, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31539493

RESUMO

Long-distance RNA transport enables local protein synthesis at metabolically-active sites distant from the nucleus. This process ensures an appropriate spatial organization of proteins, vital to polarized cells such as neurons. Here, we present a mechanism for RNA transport in which RNA granules "hitchhike" on moving lysosomes. In vitro biophysical modeling, live-cell microscopy, and unbiased proximity labeling proteomics reveal that annexin A11 (ANXA11), an RNA granule-associated phosphoinositide-binding protein, acts as a molecular tether between RNA granules and lysosomes. ANXA11 possesses an N-terminal low complexity domain, facilitating its phase separation into membraneless RNA granules, and a C-terminal membrane binding domain, enabling interactions with lysosomes. RNA granule transport requires ANXA11, and amyotrophic lateral sclerosis (ALS)-associated mutations in ANXA11 impair RNA granule transport by disrupting their interactions with lysosomes. Thus, ANXA11 mediates neuronal RNA transport by tethering RNA granules to actively-transported lysosomes, performing a critical cellular function that is disrupted in ALS.


Assuntos
Anexinas/metabolismo , Transporte Axonal/fisiologia , Grânulos Citoplasmáticos/metabolismo , Lisossomos/metabolismo , RNA/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Animais Geneticamente Modificados , Anexinas/genética , Axônios/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Mutação , Ligação Proteica , Ratos/embriologia , Ratos Sprague-Dawley , Transfecção , Peixe-Zebra
4.
Cell ; 172(3): 590-604.e13, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29373831

RESUMO

Stress granules (SGs) are transient ribonucleoprotein (RNP) aggregates that form during cellular stress and are increasingly implicated in human neurodegeneration. To study the proteome and compositional diversity of SGs in different cell types and in the context of neurodegeneration-linked mutations, we used ascorbate peroxidase (APEX) proximity labeling, mass spectrometry, and immunofluorescence to identify ∼150 previously unknown human SG components. A highly integrated, pre-existing SG protein interaction network in unstressed cells facilitates rapid coalescence into larger SGs. Approximately 20% of SG diversity is stress or cell-type dependent, with neuronal SGs displaying a particularly complex repertoire of proteins enriched in chaperones and autophagy factors. Strengthening the link between SGs and neurodegeneration, we demonstrate aberrant dynamics, composition, and subcellular distribution of SGs in cells from amyotrophic lateral sclerosis (ALS) patients. Using three Drosophila ALS/FTD models, we identify SG-associated modifiers of neurotoxicity in vivo. Altogether, our results highlight SG proteins as central to understanding and ultimately targeting neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Grânulos Citoplasmáticos/metabolismo , Mapas de Interação de Proteínas , Ribonucleoproteínas/metabolismo , Estresse Fisiológico , Animais , Drosophila melanogaster , Células HEK293 , Células HeLa , Humanos , Neurônios/metabolismo , Transporte Proteico
5.
Cell ; 173(3): 693-705.e22, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677513

RESUMO

Liquid-liquid phase separation (LLPS) is believed to underlie formation of biomolecular condensates, cellular compartments that concentrate macromolecules without surrounding membranes. Physical mechanisms that control condensate formation/dissolution are poorly understood. The RNA-binding protein fused in sarcoma (FUS) undergoes LLPS in vitro and associates with condensates in cells. We show that the importin karyopherin-ß2/transportin-1 inhibits LLPS of FUS. This activity depends on tight binding of karyopherin-ß2 to the C-terminal proline-tyrosine nuclear localization signal (PY-NLS) of FUS. Nuclear magnetic resonance (NMR) analyses reveal weak interactions of karyopherin-ß2 with sequence elements and structural domains distributed throughout the entirety of FUS. Biochemical analyses demonstrate that most of these same regions also contribute to LLPS of FUS. The data lead to a model where high-affinity binding of karyopherin-ß2 to the FUS PY-NLS tethers the proteins together, allowing multiple, distributed weak intermolecular contacts to disrupt FUS self-association, blocking LLPS. Karyopherin-ß2 may act analogously to control condensates in diverse cellular contexts.


Assuntos
Transporte Ativo do Núcleo Celular , Sinais de Localização Nuclear , Proteína FUS de Ligação a RNA/química , beta Carioferinas/química , Sítios de Ligação , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Carioferinas/metabolismo , Luz , Extração Líquido-Líquido , Substâncias Macromoleculares , Espectroscopia de Ressonância Magnética , Mutação , Nefelometria e Turbidimetria , Ligação Proteica , Domínios Proteicos , RNA/química , Espalhamento de Radiação , Temperatura
6.
Cell ; 171(3): 615-627.e16, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28942918

RESUMO

Polymerization and phase separation of proteins containing low-complexity (LC) domains are important factors in gene expression, mRNA processing and trafficking, and localization of translation. We have used solid-state nuclear magnetic resonance methods to characterize the molecular structure of self-assembling fibrils formed by the LC domain of the fused in sarcoma (FUS) RNA-binding protein. From the 214-residue LC domain of FUS (FUS-LC), a segment of only 57 residues forms the fibril core, while other segments remain dynamically disordered. Unlike pathogenic amyloid fibrils, FUS-LC fibrils lack hydrophobic interactions within the core and are not polymorphic at the molecular structural level. Phosphorylation of core-forming residues by DNA-dependent protein kinase blocks binding of soluble FUS-LC to FUS-LC hydrogels and dissolves phase-separated, liquid-like FUS-LC droplets. These studies offer a structural basis for understanding LC domain self-assembly, phase separation, and regulation by post-translational modification.


Assuntos
Proteína FUS de Ligação a RNA/química , Sequência de Aminoácidos , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Domínios Proteicos , Proteína FUS de Ligação a RNA/metabolismo
7.
Mol Cell ; 84(6): 1062-1077.e9, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38309276

RESUMO

Inverted Alu repeats (IRAlus) are abundantly found in the transcriptome, especially in introns and 3' untranslated regions (UTRs). Yet, the biological significance of IRAlus embedded in 3' UTRs remains largely unknown. Here, we find that 3' UTR IRAlus silences genes involved in essential signaling pathways. We utilize J2 antibody to directly capture and map the double-stranded RNA structure of 3' UTR IRAlus in the transcriptome. Bioinformatic analysis reveals alternative polyadenylation as a major axis of IRAlus-mediated gene regulation. Notably, the expression of mouse double minute 2 (MDM2), an inhibitor of p53, is upregulated by the exclusion of IRAlus during UTR shortening, which is exploited to silence p53 during tumorigenesis. Moreover, the transcriptome-wide UTR lengthening in neural progenitor cells results in the global downregulation of genes associated with neurodegenerative diseases, including amyotrophic lateral sclerosis, via IRAlus inclusion. Our study establishes the functional landscape of 3' UTR IRAlus and its role in human pathophysiology.


Assuntos
Poliadenilação , Proteína Supressora de Tumor p53 , Humanos , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Regiões 3' não Traduzidas/genética , Regulação da Expressão Gênica , Íntrons
8.
Genes Dev ; 38(1-2): 11-30, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38182429

RESUMO

Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disease characterized by loss of motor neurons. Human genetic studies have linked mutations in RNA-binding proteins as causative for this disease. The hnRNPA1 protein, a known pre-mRNA splicing factor, is mutated in some ALS patients. Here, two human cell models were generated to investigate how a mutation in the C-terminal low-complexity domain (LCD) of hnRNPA1 can cause splicing changes of thousands of transcripts that collectively are linked to the DNA damage response, cilium organization, and translation. We show that the hnRNPA1 D262V mutant protein binds to new binding sites on differentially spliced transcripts from genes that are linked to ALS. We demonstrate that this ALS-linked hnRNPA1 mutation alters normal RNA-dependent protein-protein interactions. Furthermore, cells expressing this hnRNPA1 mutant exhibit a cell aggregation phenotype, markedly reduced growth rates, changes in stress granule kinetics, and aberrant growth of neuronal processes. This study provides insight into how a single amino acid mutation in a splicing factor can alter RNA splicing networks of genes linked to ALS.


Assuntos
Esclerose Lateral Amiotrófica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Mutação , Splicing de RNA/genética , Fatores de Processamento de RNA/genética
9.
Cell ; 167(3): 774-788.e17, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768896

RESUMO

Expansion of a hexanucleotide repeat GGGGCC (G4C2) in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Transcripts carrying (G4C2) expansions undergo unconventional, non-ATG-dependent translation, generating toxic dipeptide repeat (DPR) proteins thought to contribute to disease. Here, we identify the interactome of all DPRs and find that arginine-containing DPRs, polyGly-Arg (GR) and polyPro-Arg (PR), interact with RNA-binding proteins and proteins with low complexity sequence domains (LCDs) that often mediate the assembly of membrane-less organelles. Indeed, most GR/PR interactors are components of membrane-less organelles such as nucleoli, the nuclear pore complex and stress granules. Genetic analysis in Drosophila demonstrated the functional relevance of these interactions to DPR toxicity. Furthermore, we show that GR and PR altered phase separation of LCD-containing proteins, insinuating into their liquid assemblies and changing their material properties, resulting in perturbed dynamics and/or functions of multiple membrane-less organelles.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Dipeptídeos/metabolismo , Demência Frontotemporal/metabolismo , Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Proteína C9orf72 , Nucléolo Celular/metabolismo , Grânulos Citoplasmáticos/metabolismo , Expansão das Repetições de DNA , Dipeptídeos/genética , Drosophila melanogaster/genética , Demência Frontotemporal/genética , Humanos , Membranas Intracelulares/metabolismo , Poro Nuclear/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Proteínas/genética
10.
Mol Cell ; 83(12): 2020-2034.e6, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295429

RESUMO

Biomolecular condensation underlies the biogenesis of an expanding array of membraneless assemblies, including stress granules (SGs), which form under a variety of cellular stresses. Advances have been made in understanding the molecular grammar of a few scaffold proteins that make up these phases, but how the partitioning of hundreds of SG proteins is regulated remains largely unresolved. While investigating the rules that govern the condensation of ataxin-2, an SG protein implicated in neurodegenerative disease, we unexpectedly identified a short 14 aa sequence that acts as a condensation switch and is conserved across the eukaryote lineage. We identify poly(A)-binding proteins as unconventional RNA-dependent chaperones that control this regulatory switch. Our results uncover a hierarchy of cis and trans interactions that fine-tune ataxin-2 condensation and reveal an unexpected molecular function for ancient poly(A)-binding proteins as regulators of biomolecular condensate proteins. These findings may inspire approaches to therapeutically target aberrant phases in disease.


Assuntos
Ataxina-2 , Doenças Neurodegenerativas , Humanos , Ataxina-2/genética , Proteína I de Ligação a Poli(A) , Doenças Neurodegenerativas/metabolismo , Condensados Biomoleculares
11.
Mol Cell ; 83(17): 3188-3204.e7, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37683611

RESUMO

Failure to clear damaged mitochondria via mitophagy disrupts physiological function and may initiate damage signaling via inflammatory cascades, although how these pathways intersect remains unclear. We discovered that nuclear factor kappa B (NF-κB) essential regulator NF-κB effector molecule (NEMO) is recruited to damaged mitochondria in a Parkin-dependent manner in a time course similar to recruitment of the structurally related mitophagy adaptor, optineurin (OPTN). Upon recruitment, NEMO partitions into phase-separated condensates distinct from OPTN but colocalizing with p62/SQSTM1. NEMO recruitment, in turn, recruits the active catalytic inhibitor of kappa B kinase (IKK) component phospho-IKKß, initiating NF-κB signaling and the upregulation of inflammatory cytokines. Consistent with a potential neuroinflammatory role, NEMO is recruited to mitochondria in primary astrocytes upon oxidative stress. These findings suggest that damaged, ubiquitinated mitochondria serve as an intracellular platform to initiate innate immune signaling, promoting the formation of activated IKK complexes sufficient to activate NF-κB signaling. We propose that mitophagy and NF-κB signaling are initiated as parallel pathways in response to mitochondrial stress.


Assuntos
NF-kappa B , Transdução de Sinais , NF-kappa B/genética , Quinase I-kappa B/genética , Proteínas Serina-Treonina Quinases/genética , Mitocôndrias/genética
12.
Mol Cell ; 80(5): 876-891.e6, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217318

RESUMO

Stress granules (SGs) are cytoplasmic assemblies of proteins and non-translating mRNAs. Whereas much has been learned about SG formation, a major gap remains in understanding the compositional changes SGs undergo during normal disassembly and under disease conditions. Here, we address this gap by proteomic dissection of the SG temporal disassembly sequence using multi-bait APEX proximity proteomics. We discover 109 novel SG proteins and characterize distinct SG substructures. We reveal dozens of disassembly-engaged proteins (DEPs), some of which play functional roles in SG disassembly, including small ubiquitin-like modifier (SUMO) conjugating enzymes. We further demonstrate that SUMOylation regulates SG disassembly and SG formation. Parallel proteomics with amyotrophic lateral sclerosis (ALS)-associated C9ORF72 dipeptides uncovered attenuated DEP recruitment during SG disassembly and impaired SUMOylation. Accordingly, SUMO activity ameliorated C9ORF72-ALS-related neurodegeneration in Drosophila. By dissecting the SG spatiotemporal proteomic landscape, we provide an in-depth resource for future work on SG function and reveal basic and disease-relevant mechanisms of SG disassembly.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Proteína C9orf72/genética , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/patologia , Dipeptídeos/genética , Dipeptídeos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Camundongos , Proteômica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
13.
EMBO J ; 42(2): e111185, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36416085

RESUMO

The misfolding and mutation of Cu/Zn superoxide dismutase (SOD1) is commonly associated with amyotrophic lateral sclerosis (ALS). SOD1 can accumulate within stress granules (SGs), a type of membraneless organelle, which is believed to form via liquid-liquid phase separation (LLPS). Using wild-type, metal-deficient, and different ALS disease mutants of SOD1 and computer simulations, we report here that the absence of Zn leads to structural disorder within two loop regions of SOD1, triggering SOD1 LLPS and amyloid formation. The addition of exogenous Zn to either metal-free SOD1 or to the severe ALS mutation I113T leads to the stabilization of the loops and impairs SOD1 LLPS and aggregation. Moreover, partial Zn-mediated inhibition of LLPS was observed for another severe ALS mutant, G85R, which shows perturbed Zn-binding. By contrast, the ALS mutant G37R, which shows reduced Cu-binding, does not undergo LLPS. In addition, SOD1 condensates induced by Zn-depletion exhibit greater cellular toxicity than aggregates formed by prolonged incubation under aggregating conditions. Overall, our work establishes a role for Zn-dependent modulation of SOD1 conformation and LLPS properties that may contribute to amyloid formation.


Assuntos
Superóxido Dismutase-1 , Zinco , Humanos , Esclerose Lateral Amiotrófica/enzimologia , Mutação , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética , Zinco/química , Dobramento de Proteína
14.
Annu Rev Neurosci ; 42: 385-406, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31283897

RESUMO

Antisense oligonucleotides represent a novel therapeutic platform for the discovery of medicines that have the potential to treat most neurodegenerative diseases. Antisense drugs are currently in development for the treatment of amyotrophic lateral sclerosis, Huntington's disease, and Alzheimer's disease, and multiple research programs are underway for additional neurodegenerative diseases. One antisense drug, nusinersen, has been approved for the treatment of spinal muscular atrophy. Importantly, nusinersen improves disease symptoms when administered to symptomatic patients rather than just slowing the progression of the disease. In addition to the benefit to spinal muscular atrophy patients, there are discoveries from nusinersen that can be applied to other neurological diseases, including method of delivery, doses, tolerability of intrathecally delivered antisense drugs, and the biodistribution of intrathecal dosed antisense drugs. Based in part on the early success of nusinersen, antisense drugs hold great promise as a therapeutic platform for the treatment of neurological diseases.


Assuntos
Atrofia Muscular Espinal/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos/farmacologia , Distribuição Tecidual/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Doenças Neurodegenerativas/genética
15.
Mol Cell ; 74(4): 742-757.e8, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30979586

RESUMO

Disturbances in autophagy and stress granule dynamics have been implicated as potential mechanisms underlying inclusion body myopathy (IBM) and related disorders. Yet the roles of core autophagy proteins in IBM and stress granule dynamics remain poorly characterized. Here, we demonstrate that disrupted expression of the core autophagy proteins ULK1 and ULK2 in mice causes a vacuolar myopathy with ubiquitin and TDP-43-positive inclusions; this myopathy is similar to that caused by VCP/p97 mutations, the most common cause of familial IBM. Mechanistically, we show that ULK1/2 localize to stress granules and phosphorylate VCP, thereby increasing VCP's activity and ability to disassemble stress granules. These data suggest that VCP dysregulation and defective stress granule disassembly contribute to IBM-like disease in Ulk1/2-deficient mice. In addition, stress granule disassembly is accelerated by an ULK1/2 agonist, suggesting ULK1/2 as targets for exploiting the higher-order regulation of stress granules for therapeutic intervention of IBM and related disorders.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Doenças por Armazenamento dos Lisossomos/genética , Doenças Musculares/genética , Proteínas Serina-Treonina Quinases/genética , Proteína com Valosina/genética , Adenosina Trifosfatases/genética , Animais , Autofagia/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/patologia , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Camundongos , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Fosforilação/genética , Estresse Fisiológico/genética , Ubiquitina/genética
16.
Mol Cell ; 73(3): 490-504.e6, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30581145

RESUMO

Fused in sarcoma (FUS) is an RNA binding protein involved in regulating many aspects of RNA processing and linked to several neurodegenerative diseases. Transcriptomics studies indicate that FUS binds a large variety of RNA motifs, suggesting that FUS RNA binding might be quite complex. Here, we present solution structures of FUS zinc finger (ZnF) and RNA recognition motif (RRM) domains bound to RNA. These structures show a bipartite binding mode of FUS comprising of sequence-specific recognition of a NGGU motif via the ZnF and an unusual shape recognition of a stem-loop RNA via the RRM. In addition, sequence-independent interactions via the RGG repeats significantly increase binding affinity and promote destabilization of structured RNA conformation, enabling additional binding. We further show that disruption of the RRM and ZnF domains abolishes FUS function in splicing. Altogether, our results rationalize why deciphering the RNA binding mode of FUS has been so challenging.


Assuntos
Proteína FUS de Ligação a RNA/química , RNA/química , Sítios de Ligação , Células HeLa , Humanos , Modelos Moleculares , Motivos de Nucleotídeos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA/genética , RNA/metabolismo , Motivo de Reconhecimento de RNA , Splicing de RNA , Estabilidade de RNA , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Relação Estrutura-Atividade , Dedos de Zinco
17.
Proc Natl Acad Sci U S A ; 121(31): e2220020121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042693

RESUMO

Expansion of intronic GGGGCC repeats in the C9orf72 gene causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Transcription of the expanded repeats results in the formation of RNA-containing nuclear foci and altered RNA metabolism. In addition, repeat-associated non-AUG (RAN) translation of the expanded GGGGCC-repeat sequence results in the production of highly toxic dipeptide-repeat (DPR) proteins. GGGGCC repeat-containing transcripts form G-quadruplexes, which are associated with formation of RNA foci and RAN translation. Zfp106, an RNA-binding protein essential for motor neuron survival in mice, suppresses neurotoxicity in a Drosophila model of C9orf72 ALS. Here, we show that Zfp106 inhibits formation of RNA foci and significantly reduces RAN translation caused by GGGGCC repeats in cultured mammalian cells, and we demonstrate that Zfp106 coexpression reduces the levels of DPRs in C9orf72 patient-derived cells. Further, we show that Zfp106 binds to RNA G-quadruplexes and causes a conformational change in the G-quadruplex structure formed by GGGGCC repeats. Together, these data demonstrate that Zfp106 suppresses the formation of RNA foci and DPRs caused by GGGGCC repeats and suggest that the G-quadruplex RNA-binding function of Zfp106 contributes to its suppression of GGGGCC repeat-mediated cytotoxicity.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Quadruplex G , Proteínas de Ligação a RNA , RNA , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansão das Repetições de DNA , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Biossíntese de Proteínas , RNA/metabolismo , RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
18.
Trends Biochem Sci ; 47(1): 6-22, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34366183

RESUMO

RNA-binding proteins (RBPs) are critical players in RNA expression and metabolism, thus, the proper regulation of this class of proteins is critical for cellular health. Regulation of RBPs often occurs through post-translational modifications (PTMs), which allow the cell to quickly and efficiently respond to cellular and environmental stimuli. PTMs have recently emerged as important regulators of RBPs implicated in neurodegenerative disorders, in particular amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we summarize how disease-associated PTMs influence the biophysical properties, molecular interactions, subcellular localization, and function of ALS/FTD-linked RBPs, such as FUS and TDP-43. We will discuss how PTMs are believed to play pathological, protective, or ambiguous roles in these neurodegenerative disorders.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Humanos , Processamento de Proteína Pós-Traducional , Proteína FUS de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
19.
Semin Cell Dev Biol ; 156: 176-189, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-37268555

RESUMO

In recent years, there has been an emphasis on the role of phase-separated biomolecular condensates, especially stress granules, in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). This is largely due to several ALS-associated mutations occurring in genes involved in stress granule assembly and observations that pathological inclusions detected in ALS patient neurons contain stress granule proteins, including the ALS-linked proteins TDP-43 and FUS. However, protein components of stress granules are also found in numerous other phase-separated biomolecular condensates under physiological conditions which are inadequately discussed in the context of ALS. In this review, we look beyond stress granules and describe the roles of TDP-43 and FUS in physiological condensates occurring in the nucleus and neurites, such as the nucleolus, Cajal bodies, paraspeckles and neuronal RNA transport granules. We also discuss the consequences of ALS-linked mutations in TDP-43 and FUS on their ability to phase separate into these stress-independent biomolecular condensates and perform their respective functions. Importantly, biomolecular condensates sequester multiple overlapping protein and RNA components, and their dysregulation could contribute to the observed pleiotropic effects of both sporadic and familial ALS on RNA metabolism.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Condensados Biomoleculares , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Doenças Neurodegenerativas/metabolismo , Mutação/genética , RNA
20.
Hum Mol Genet ; 33(15): 1300-1314, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38676626

RESUMO

MicroRNAs (miRNAs) are a subset of small non-coding single-stranded RNA molecules involved in the regulation of post-transcriptional gene expression of a variety of transcript targets. Therefore altered miRNA expression may result in the dysregulation of key genes and biological pathways that has been reported with the onset and progression of neurodegenerative diseases, such as Amyotrophic lateral sclerosis (ALS). ALS is marked by a progressive degeneration of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex. Although the pathomechanism underlying molecular interactions of ALS remains poorly understood, alterations in RNA metabolism, including dysregulation of miRNA expression in familial as well as sporadic forms are still scarcely studied. In this study, we performed combined transcriptomic data and miRNA profiling in MN samples of the same samples of iPSC-derived MNs from SOD1- and TARDBP (TDP-43 protein)-mutant-ALS patients and healthy controls. We report a global upregulation of mature miRNAs, and suggest that differentially expressed (DE) miRNAs have a significant impact on mRNA-level in SOD1-, but not in TARDBP-linked ALS. Furthermore, in SOD1-ALS we identified dysregulated miRNAs such as miR-124-3p, miR-19b-3p and miR-218 and their potential targets previously implicated in important functional process and pathogenic pathways underlying ALS. These miRNAs may play key roles in the neuronal development and cell survival related functions in SOD1-ALS. Altogether, we provide evidence of miRNA regulated genes expression mainly in SOD1 rather than TDP43-ALS.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Neurônios Motores , RNA Mensageiro , Superóxido Dismutase-1 , MicroRNAs/genética , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA