Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 848
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(22): e2219470121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38776365

RESUMO

NRF2 (nuclear factor erythroid-2-related factor 2) is a key regulator of genes involved in the cell's protective response to oxidative stress. Upon activation by disturbed redox homeostasis, NRF2 promotes the expression of metabolic enzymes to eliminate reactive oxygen species (ROS). Cell internalization of peroxisome-like artificial organelles that harbor redox-regulating enzymes was previously shown to reduce ROS-induced stress and thus cell death. However, if and to which extent ROS degradation by such nanocompartments interferes with redox signaling pathways is largely unknown. Here, we advance the design of H2O2-degrading artificial nano-organelles (AnOs) that exposed surface-attached cell penetrating peptides (CPP) for enhanced uptake and were equipped with a fluorescent moiety for rapid visualization within cells. To investigate how such AnOs integrate in cellular redox signaling, we engineered leukemic K562 cells that report on NRF2 activation by increased mCherry expression. Once internalized, ROS-metabolizing AnOs dampen intracellular NRF2 signaling upon oxidative injury by degrading H2O2. Moreover, intracellular AnOs conferred protection against ROSinduced cell death in conditions when endogenous ROS-protection mechanisms have been compromised by depletion of glutathione or knockdown of NRF2. We demonstrate CPP-facilitated AnO uptake and AnO-mediated protection against ROS insults also in the T lymphocyte population of primary peripheral blood mononuclear cells from healthy donors. Overall, our data suggest that intracellular AnOs alleviated cellular stress by the on-site reduction of ROS.


Assuntos
Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células K562 , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/farmacologia , Organelas/metabolismo
2.
FASEB J ; 38(3): e23466, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318780

RESUMO

Despite decades of research, the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) is still not completely understood. Based on the evidence from preclinical models, one of the factors proposed as a main driver of disease development is oxidative stress. This study aimed to search for the resemblance between the profiles of oxidative stress and antioxidant defense in the animal model of MASLD and the group of MASLD patients. C57BL/6J mice were fed with the Western diet for up to 24 weeks and served as the animal model of MASLD. The antioxidant profile of mice hepatic tissue was determined by liquid chromatography-MS3 spectrometry (LC-MS/MS). The human cohort consisted of 20 patients, who underwent bariatric surgery, and 6 controls. Based on histological analysis, 4 bariatric patients did not have liver steatosis and as such were also classified as controls. Total antioxidant activity was measured in sera and liver biopsy samples. The hepatic levels of antioxidant enzymes and oxidative damage were determined by Western Blot. The levels of antioxidant enzymes were significantly altered in the hepatic tissue of mice with MASLD. In contrast, there were no significant changes in the antioxidant profile of hepatic tissue of MASLD patients, except for the decreased level of carbonylated proteins. Decreased protein carbonylation together with significant correlations between the thioredoxin system and parameters describing metabolic health suggest alterations in the thiol-redox signaling. Altogether, these data show that even though the phenotype of mice closely resembles human MASLD, the animal-to-human translation of cellular and molecular processes such as oxidative stress may be more challenging.


Assuntos
Fígado Gorduroso , Doenças Metabólicas , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Antioxidantes , Cromatografia Líquida , Espectrometria de Massas em Tandem , Estresse Oxidativo , Modelos Animais
3.
Drug Resist Updat ; 77: 101137, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39178714

RESUMO

AIMS: Hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP), coharboring hypervirulence and carbapenem-resistance genes mediated by plasmids, causes infections with extremely high mortality and seriously impacts public health. Exploring the transfer mechanisms of virulence/carbapenem-resistance plasmids, as well as the formation and evolution pathway of hv-CRKP is of great significance to the control of hv-CRKP infections. METHODS: In this study, we identified the predominant clone of hv-CRKP in China and elucidated its genomic characteristics and formation route based on 239 multicenter clinical K. pneumoniae isolates and 1014 GenBank genomes by using comparative genomic analysis. Further, we revealed the factors affecting the transfer of virulence plasmids, and explained the genetic foundation for the prevalence of Chinese predominant hv-CRKP clone. RESULTS: ST11-KL64 is the predominant clone of hv-CRKP in China and primarily evolved from ST11-KL64 CRKP by acquiring the pLVPK-like virulence plasmid from hvKP. Significantly, the virulence gene cluster iroBCDN was lost in the virulence plasmid of ST11-KL64 hv-CRKP but existed in that of hvKP. Moreover, the absence of iroBCDN didn't decrease the virulence of hv-CRKP, which was proved by bacterial test, cell-interaction test and mice infection model. On the contrary, loss of iroBCDN was observed to regulate virulence/carbapenem-resistance plasmid transfer and oxidative stress-related genes in strains and thus promoted the mobilization of nonconjugative virulence plasmid from hvKP into ST11-KL64 CRKP, forming hv-CRKP which finally had elevated antioxidant capacity and enhanced survival capacity in macrophages. The loss of iroBCDN increased the survival ability of hv-CRKP without decreasing its virulence, endowing it with an evolutionary advantage. CONCLUSIONS: Our work provides new insights into the key role of iroBCDN loss in convergence of CRKP and hvKP, and the genetic and biological foundation for the widespread prevalence of ST11-KL64 hv-CRKP in China.

4.
BMC Plant Biol ; 24(1): 933, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379805

RESUMO

Chitosan (CTS) is recognized for enhancing a plant's resilience to various environmental stresses, such as salinity and drought. Moreover, salicylic acid (SA) is acknowledged as a growth regulator involved in addressing metal toxicity. However, the effectiveness of both compounds in mitigating Cr-induced stress has remained relatively unexplored, especially in the case of Aconitum napellus, a medicinally and floricultural important plant. Therefore, the primary objective of this study was to investigate the potential of CTS and SA in alleviating chromium (Cr)-induced stress in A. napellus. To address these research questions, we conducted a controlled experiment using potted plants to evaluate the individual and combined impacts of CTS and SA on plants exposed to Cr stress. Foliar application of CTS (0.4 g/L) or SA (0.25 mmol/L) led to significant improvements in the growth, chlorophyll content, fluorescence, and photosynthetic traits of A. napellus plants under Cr stress. The most notable effects were observed with the combined application of CTS and SA, resulting in increases in various morphological parameters, such as shoot length (2.89% and 7.02%) and root length (27.75% and 3.36%) under the Cr 1 and Cr 2 treatments, respectively. Additionally, several physiological parameters, such as chlorophyll a (762.5% and 145.56%), chlorophyll b (762.5% and 145.56%), carotenoid (17.03% and 28.57%), and anthocyanin (112.01% and 47.96%) contents, were notably improved under the Cr 1 and Cr 2 treatments, respectively. Moreover, the combined treatment of CTS and SA improved the fluorescence parameters while decreasing the levels of enzymatic antioxidants such as catalase (27.59% and 43.79%, respectively). The application also notably increased osmoprotectant parameters, such as the total protein content (54.11% and 20.07%) and the total soluble sugar content (78.17% and 49.82%) in the leaves of A. napellus in the Cr 1 and 2 treatments, respectively. In summary, these results strongly suggest that the simultaneous use of exogenous CTS and SA is an effective strategy for alleviating the detrimental effects of Cr stress on A. napellus. This integrated approach opens promising avenues for further exploration and potential implementation within agricultural production systems.


Assuntos
Aconitum , Quitosana , Cromo , Fotossíntese , Ácido Salicílico , Ácido Salicílico/farmacologia , Quitosana/farmacologia , Fotossíntese/efeitos dos fármacos , Aconitum/efeitos dos fármacos , Aconitum/fisiologia , Clorofila/metabolismo , Estresse Fisiológico/efeitos dos fármacos
5.
BMC Plant Biol ; 24(1): 243, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575896

RESUMO

BACKGROUND: Carrot is an important vegetable crop grown worldwide. The major economic problem in carrot cultivation is yellow disease caused by Bactericera trigonica, which induces biotic stress and has the greatest impact on crop productivity. Comprehensive studies on the mechanism of carrot defense response to biotic stress caused by B. trigonica infestation have yet to be conducted. METHODS: The changes in photosynthetic pigments, proline, TPC, H2O2 and MDA content, DPPH radical scavenging ability, and antioxidant enzyme activity of SOD, CAT, and POX in carrot leaves in response to insect sex (female and male), rapid response (during the first six hours), and long-term response to B. trigonica infestation were evaluated. RESULTS: The results of our study strongly suggest that B. trigonica infestation causes significant changes in primary and secondary metabolism and oxidative status of carrot leaves. Photosynthetic pigment content, TPC, and DPPH and CAT activities were significantly reduced in carrot leaves in response to insect infestation. On the other hand, proline, H2O2 content, and the activity of the antioxidant enzymes superoxide dismutase and peroxidase were increased in carrot leaves after B. trigonica infestation. The results indicate that B. trigonica attenuates and delays the oxidative stress responses of carrot, allowing long-term feeding without visible changes in the plant. Carrot responded to long-term B. trigonica infestation with an increase in SOD and POX activity, suggesting that these enzymes may play a key role in plant defense mechanisms. CONCLUSIONS: This is the first comprehensive study strongly suggesting that B. trigonica infestation causes significant changes in primary and secondary metabolism and an attenuated ROS defense response in carrot leaves that enables long-term insect feeding. The information provides new insights into the mechanisms of carrot protection against B. trigonica infestation.


Assuntos
Afídeos , Daucus carota , Hemípteros , Ftirápteros , Animais , Daucus carota/metabolismo , Afídeos/fisiologia , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Prolina/metabolismo , Ftirápteros/metabolismo
6.
BMC Plant Biol ; 24(1): 239, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570782

RESUMO

The postharvest life of cut flowers is limited, which is a major challenge and varies greatly depending on plant varieties, cut flower stage, flower length of the harvested shoots, and storage conditions including postharvest treatments. As a result, improving the vase life and quality of cut flowers in regulating postharvest characteristics and overcoming these challenges is critical to the horticulture business. Novel engineered nanocomposites were created and tested for possible impacts on flower bud opening, postharvest life extension, longevity regulation, and preservation and enhancement of the strength and appearance of cut flowers. The experiment was conducted as a factorial experiment using a completely randomized design (CRD) with two factors. The first factor was two holding solutions (without or with sucrose at 20 gL-1). The second factor was 12 pulsing treatments for 24 h; distilled water as a control, 75 ppm GA3, multi-walled carbon nanotubes MWCNTs at 10, 20, 30, 40, and 50 ppm, and MWCNTs (10, 20, 30, 40, and 50 ppm)/GA3 (75 ppm) composites; each treatment had 3 replicates, for a total of 72 experimental units. In the present study, gibberellic acid (GA3) was synthesized in functionalized (MWCNT/GA3 composites) as a novel antisenescence agent, and their effect on the vase life quality of cut rose flowers Rosa hybrida cv. 'Moonstone' was compared by assaying several parameters critical for vase life. The adsorption of GA3 on MWCNTs was proven by performing FTIR spectroscopy which ensures that the formation of the MWCNTs/GA3 composite preserves the nanostructure and was examined by high-resolution transmission electron microscopy (HR-TEM). The results revealed that sucrose in the holding solution showed a significant increase in fresh weight, flower diameter, and vase life by 10.5, 10.6, and 3.3% respectively. Applying sucrose with MWCNTs 20 ppm/GA3 75 ppm composites or MWCNTs 20 ppm alone, was critical for the significant increase in flower opening by 39.7 and 28.7%, and longevity by 34.4 and 23.2%, respectively, and significantly increased chlorophyll a, b, total chlorophyll, anthocyanin, total phenolic content, and 2,2-Diphenyl-1-picrylhydrazyl scavenging activity as compared to the control.


Assuntos
Giberelinas , Nanotubos de Carbono , Rosa , Clorofila A , Sacarose
7.
BMC Plant Biol ; 24(1): 217, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532319

RESUMO

Catalpa bungei is a precious timber species distributed in North China where drought often occurs. To clarify adaptive responses of C. bungei to partial- and full- root-zone drought under the influence of nitrogen forms, a two-factor experiment was conducted in which well-watered (WW), partial root-zone drought in horizontal direction (H-PRD) and in vertical direction (V-PRD), and full root-zone drought (FRD) were combined with nitrate-nitrogen (NN) and ammonium-nitrogen (AN) treatments. C. bungei responded to FRD by sharply closing stomata, decreasing gas exchange rate and increasing leaf instantaneous water use efficiency (WUEi). Under FRD condition, the growth of seedlings was severely inhibited and the effect of N forms was covered up by the drastic drought effect. In comparison, stomata conductance and gas exchanges were moderately inhibited by PRDs. WUEi in V-PRD treatment was superior to H-PRD due to the active stomata regulation resulting from a higher ABA level and active transcription of genes in abscisic acid (ABA) signaling pathway under V-PRD. Under both PRDs and FRD, nitrate benefited antioxidant defense, stomata regulation and leaf WUEi. Under V-PRD, WUEi in nitrate treatment was superior to that in ammonium treatment due to active stomata regulation by signaling network of nitric oxide (NO), Ca2+ and ABA. Under FRD, WUEi was higher in nitrate treatment due to the favoring photosynthetic efficiency resulting from active NO signal and antioxidant defense. The interactive effect of water and N forms was significant on wood xylem development. Superoxide dismutase (SOD) and catalase (CAT) largely contributes to stress tolerance and xylem development.


Assuntos
Nitratos , Nitrogênio , Nitrogênio/metabolismo , Secas , Antioxidantes , Água/metabolismo
8.
Planta ; 259(2): 49, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285217

RESUMO

MAIN CONCLUSION: ZmCBL8-1 enhances salt stress tolerance in maize by improving the antioxidant system to neutralize ROS homeostasis and inducing Na+/H+ antiporter gene expressions of leaves. Calcineurin B-like proteins (CBLs) as plant-specific calcium sensors have been explored for their roles in the regulation of abiotic stress tolerance. Further, the functional variations in ZmCBL8, encoding a component of the salt overly sensitive pathway, conferred the salt stress tolerance in maize. ZmCBL8-1 is a transcript of ZmCBL8 found in maize, but its function in the salt stress response is still unclear. The present study aimed to characterize the protein ZmCBL8-1 that was determined to be composed of 194 amino acids (aa) with three conserved EF hands responsible for binding Ca2+. However, a 20-aa fragment was found to be missing from its C-terminus relative to another transcript of ZmCBL8. Results indicated that it harbored a dual-lipid modification motif MGCXXS at its N-terminus and was located on the cell membrane. The accumulation of ZmCBL8-1 transcripts was high in the roots but relatively lower in the leaves of maize under normal condition. In contrast, its expression was significantly decreased in the roots, while increased in the leaves under NaCl treatment. The overexpression of ZmCBL8-1 resulted in higher salt stress resistance of transgenic Arabidopsis in a Ca2+-dependent manner relative to that of the wild type (WT). In ZmCBL8-1-overexpressing plants exposed to NaCl, the contents of malondialdehyde and hydrogen peroxide were decreased in comparison with those in the WT, and the expression of key genes involved in the antioxidant defense system and Na+/H+ antiporter were upregulated. These results suggested that ZmCBL8-1 played a positive role in the response of leaves to salt stress by inducing the expression of Na+/H+ antiporter genes and enhancing the antioxidant system to neutralize the accumulation of reactive oxygen species. These observations further indicate that ZmCBL8-1 confers salt stress tolerance, suggesting that transcriptional regulation of the ZmCBL8 gene is important for salt tolerance.


Assuntos
Arabidopsis , Estresse Salino , Zea mays , Aminoácidos , Antioxidantes , Antiporters , Arabidopsis/fisiologia , Calcineurina/genética , Cloreto de Sódio/farmacologia , Zea mays/genética
9.
Malar J ; 23(1): 198, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926807

RESUMO

BACKGROUND: Malaria, a severe health threat, significantly affects total antioxidant status (TAS) levels, leading to considerable oxidative stress. This systematic review and meta-analysis aimed to delineate differences in TAS levels between malaria patients and healthy controls, and assess correlations between disease severity and parasite density. METHODS: The systematic review was registered with the International Prospective Register of Systematic Reviews (PROSPERO) under registration number CRD42023448761. A comprehensive literature search was conducted in databases such as Embase, MEDLINE, Journals@Ovid, PubMed, Scopus, ProQuest, and Google Scholar to identify studies reporting data on TAS levels in malaria patients. Data from the included studies were analysed both qualitatively and quantitatively. Differences in TAS levels between malaria patients and controls were pooled using a random effects model, with Hedges' g as the effect size measure. RESULTS: Of 1796 identified records, 20 studies met the inclusion criteria. The qualitative synthesis of these studies revealed a marked decrease in TAS levels in patients with malaria compared to non-malaria cases. The meta-analysis results showed a significant decrease in TAS levels in patients with malaria compared to non-malaria cases (P < 0.01, Hedges' g: - 2.75, 95% CI - 3.72 to -1.78, I2: 98.16%, 13 studies), suggesting elevated oxidative stress in these patients. Subgroup analyses revealed that TAS level variations were significantly influenced by geographical region, age group, Plasmodium species, and method for measuring TAS. Notably, TAS levels were significantly lower in severe malaria cases and those with high parasite density, indicating a potential relationship between oxidative stress and disease severity. CONCLUSION: This study highlights the potential utility of TAS as a biomarker for disease risk and severity in malaria. The significant decrease in TAS levels in malaria patients compared to controls implies increased oxidative stress. Further well-designed, large-scale studies are warranted to validate these findings and elucidate the intricate mechanisms linking TAS and malaria.


Assuntos
Antioxidantes , Malária , Estresse Oxidativo , Antioxidantes/metabolismo , Antioxidantes/análise , Humanos
10.
Int Microbiol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020234

RESUMO

The study aimed to understand the dynamic interplay between plants and their associated microbes to develop an efficient microbial consortium for managing Fusarium wilt of cumin. A total of 601 rhizospheric and endophytic bacteria and fungi were screened for antagonistic activity against Fusarium oxysporum f.sp. cumini (Foc). Subsequently, ten bacteria and ten fungi were selected for characterizing their growth promotion traits and ability to withstand abiotic stress. Furthermore, a pot experiment was conducted to evaluate the bioefficacy of promising biocontrol isolates-1F, 16B, 31B, and 223B in mono and consortium mode, focusing on disease severity, plant growth, and defense responses in cumin challenged with Foc. Promising isolates were identified as Trichoderma atrobruneum 15F, Pseudomonas sp. 2B, Bacillus amyloliquefaciens 9B, and Bacillus velezensis 32B. In planta, results revealed that cumin plants treated with consortia of 15F, 2B, 9B, and 32B showed highest percent disease control (76.35%) in pot experiment. Consortia of biocontrol agents significantly enhanced production of secondary metabolites and activation of antioxidant-defense enzymes compared to individual strain. Moreover, consortium treatments effectively reduced electrolyte leakage over the individual strain and positive control. The four-microbe consortium significantly enhanced chlorophyll (~ 2.74-fold), carotenoid content (~ 2.14-fold), plant height (~ 1.8-fold), dry weight (~ 1.96-fold), and seed yield (~ 19-fold) compared to positive control in pot experiment. Similarly, four microbe consortia showed highest percent disease control (72.2%) over the positive control in field trial. Moreover, plant growth, biomass, yield, and yield attributes of cumin were also significantly increased in field trial over the positive control as well as negative control.

11.
Mol Biol Rep ; 51(1): 315, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376571

RESUMO

BACKGROUND: Sugarcane, an economically important crop cultivated for its unique character of accumulating sucrose into its stalk and the world's major crop according to production quantity. Sugarcane production is negatively influenced by abiotic stresses because it faces all types of environments due to its long-life cycle period. Among the various abiotic stresses, drought is one of the major limiting factors creates obstacle in sugarcane production. Thus, an attempt was made to assess the molecular insights into sugarcane genotypes under water stress. A preliminary screening was done in ten sugarcane genotypes grown under semi-arid region of India through physiological, biochemical and antioxidant responses of these genotypes under two water deficit levels. METHODS: In the current study, drought was imposed on ten sugarcane genotypes during their formative stage (110 DAP) by depriving them of irrigation. A pot experiment was carried out to see how several commercial sugarcane genotypes responded to water scarcity. Sugarcane received two treatments, the first after 125 days and the second after 140 days. The physio-biochemical and antioxidant responses recorded were RWC, MSI, SCMR, Proline accumulation, SOD, Catalase, Peroxidase and Lipid peroxidation. The significant variations were recorded in responses of all genotypes. On the basis of physio-biochemical, three genotypes Cos 98,014, Cos 13,235 and Colk 14,201 were selected for differential gene expression pattern analysis. The total RNA was isolated and reverse transcribe to cDNA and real time PCR was performed for expression analysis under 10 genes. RESULTS: Under drought conditions, all sugarcane genotypes showed significantly decreased RWC, chlorophyll content, and MSI. However, when water was scarce, proline buildup, malondialdehyde (MDA) contents, enzymatic antioxidant activity (CAT, POD, and SOD), and contents all increased dramatically. Finally, in all physiological and biochemical parameters, Co 98,014 genotype displayed superior adaptation responses to drought stress, followed by Co 018, Cos 13,235, and Colk 14,201. For gene expression analysis out of 21 genes, 10 genes were expressed in sugarcane genotypes, in which 7 genes (Shbbx2, Shbbx3, Shbbx4, Shbbx5, Shbbx8, Shbbx15 and Shbbx20) were upregulated and 3 genes (Shbbx1, Shbbx16 and Shbbx17) were downregulated. CONCLUSION: The statistical analysis conducted in this study demonstrated that drought stress had a negative impact on physiological responses, including RWC, SPAD, and MSI, in sugarcane crops. However, it was found that the crops were able to survive in these stress conditions by increasing their biochemical parameters, all while maintaining their growth and function.


Assuntos
Saccharum , Saccharum/genética , Antioxidantes , Desidratação , Genótipo , Produtos Agrícolas , Perfilação da Expressão Gênica , Prolina , Superóxido Dismutase/genética
12.
J Nanobiotechnology ; 22(1): 559, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267043

RESUMO

OBJECTIVE: The exacerbation of extreme high-temperature events due to global climate change poses a significant challenge to public health, particularly impacting the central nervous system through heat stroke. This study aims to develop Poly(amidoamine) (PAMAM) nanoparticles loaded with curcumin (PAMAM@Cur) to enhance its therapeutic efficacy in hypothalamic neural damage in a heat stroke model and explore its potential mechanisms. METHODS: Curcumin (Cur) was encapsulated into PAMAM nanoparticles through a hydrophobic interaction method, and various techniques were employed to characterize their physicochemical properties. A heat stroke mouse model was established to monitor body temperature and serum biochemical parameters, conduct behavioral assessments, histological examinations, and biochemical analyses. Transcriptomic and proteomic analyses were performed to investigate the therapeutic mechanisms of PAMAM@Cur, validated in an N2a cell model. RESULTS: PAMAM@Cur demonstrated good stability, photostability, cell compatibility, significant blood-brain barrier (BBB) penetration capability, and effective accumulation in the brain. PAMAM@Cur markedly improved behavioral performance and neural cell structural integrity in heat stroke mice, alleviated inflammatory responses, with superior therapeutic effects compared to Cur or PAMAM alone. Multi-omics analysis revealed that PAMAM@Cur regulated antioxidant defense genes and iron death-related genes, particularly upregulating the PCBP2 protein, stabilizing SLC7A11 and GPX4 mRNA, and reducing iron-dependent cell death. CONCLUSION: By enhancing the drug delivery properties of Cur and modulating molecular pathways relevant to disease treatment, PAMAM@Cur significantly enhances the therapeutic effects against hypothalamic neural damage induced by heat stroke, showcasing the potential of nanotechnology in improving traditional drug efficacy and providing new strategies for future clinical applications. SIGNIFICANCE: This study highlights the outlook of nanotechnology in treating neurological disorders caused by heat stroke, offering a novel therapeutic approach with potential clinical applications.


Assuntos
Curcumina , Golpe de Calor , Nanopartículas , Curcumina/farmacologia , Curcumina/química , Animais , Golpe de Calor/tratamento farmacológico , Camundongos , Nanopartículas/química , Masculino , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Modelos Animais de Doenças , Portadores de Fármacos/química , Dendrímeros/química , Dendrímeros/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Linhagem Celular , Poliaminas
13.
Arch Toxicol ; 98(3): 709-734, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38182913

RESUMO

With the rapid development of new generations of antitumor therapies, the average survival time of cancer patients is expected to be continuously prolonged. However, these therapies often lead to cardiotoxicity, resulting in a growing number of tumor survivors with cardiovascular disease. Therefore, a new interdisciplinary subspecialty called "cardio-oncology" has emerged, aiming to detect and treat cardiovascular diseases associated with tumors and antitumor therapies. Recent studies have highlighted the role of ferroptosis in both cardiovascular and neoplastic diseases. The balance between intracellular oxidative stress and antioxidant defense is crucial in regulating ferroptosis. Tumor cells can evade ferroptosis by upregulating multiple antioxidant defense pathways, while many antitumor therapies rely on downregulating antioxidant defense and promoting ferroptosis in cancer cells. Unfortunately, these ferroptosis-inducing antitumor therapies often lack tissue specificity and can also cause injury to the heart, resulting in ferroptosis-induced cardiotoxicity. A range of cardioprotective agents exert cardioprotective effects by inhibiting ferroptosis. However, these cardioprotective agents might diminish the efficacy of antitumor treatment due to their antiferroptotic effects. Most current research on ferroptosis only focuses on either tumor treatment or heart protection but rarely considers both in concert. Therefore, further research is needed to study how to protect the heart during antitumor therapies by regulating ferroptosis. In this review, we summarized the role of ferroptosis in the treatment of neoplastic diseases and cardiovascular diseases and also attempted to propose further research directions for ferroptosis in the field of cardio-oncology.


Assuntos
Doenças Cardiovasculares , Ferroptose , Humanos , Antioxidantes , Cardio-Oncologia , Cardiotônicos , Cardiotoxicidade , Doenças Cardiovasculares/induzido quimicamente
14.
Am J Respir Crit Care Med ; 207(12): 1576-1590, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37219322

RESUMO

Rationale: Tobacco smoking and air pollution are primary causes of chronic obstructive pulmonary disease (COPD). However, only a minority of smokers develop COPD. The mechanisms underlying the defense against nitrosative/oxidative stress in nonsusceptible smokers to COPD remain largely unresolved. Objectives: To investigate the defense mechanisms against nitrosative/oxidative stress that possibly prevent COPD development or progression. Methods: Four cohorts were investigated: 1) sputum samples (healthy, n = 4; COPD, n = 37), 2) lung tissue samples (healthy, n = 13; smokers without COPD, n = 10; smoker+COPD, n = 17), 3) pulmonary lobectomy tissue samples (no/mild emphysema, n = 6), and 4) blood samples (healthy, n = 6; COPD, n = 18). We screened 3-nitrotyrosine (3-NT) levels, as indication of nitrosative/oxidative stress, in human samples. We established a novel in vitro model of a cigarette smoke extract (CSE)-resistant cell line and studied 3-NT formation, antioxidant capacity, and transcriptomic profiles. Results were validated in lung tissue, isolated primary cells, and an ex vivo model using adeno-associated virus-mediated gene transduction and human precision-cut lung slices. Measurements and Main Results: 3-NT levels correlate with COPD severity of patients. In CSE-resistant cells, nitrosative/oxidative stress upon CSE treatment was attenuated, paralleled by profound upregulation of heme oxygenase-1 (HO-1). We identified carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) as a negative regulator of HO-1-mediated nitrosative/oxidative stress defense in human alveolar type 2 epithelial cells (hAEC2s). Consistently, inhibition of HO-1 activity in hAEC2s increased the susceptibility toward CSE-induced damage. Epithelium-specific CEACAM6 overexpression increased nitrosative/oxidative stress and cell death in human precision-cut lung slices on CSE treatment. Conclusions: CEACAM6 expression determines the hAEC2 sensitivity to nitrosative/oxidative stress triggering emphysema development/progression in susceptible smokers.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Antígenos CD/metabolismo , Antioxidantes , Moléculas de Adesão Celular/metabolismo , Proteínas Ligadas por GPI/efeitos adversos , Proteínas Ligadas por GPI/metabolismo , Heme Oxigenase-1/metabolismo , Estresse Oxidativo , Nicotiana
15.
Biochem Genet ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460087

RESUMO

The excessive production of reactive oxygen species and weakening of antioxidant defense system play a pivotal role in the pathogenesis of different diseases. Extensive differences observed among individuals in terms of affliction with cancer, cardiovascular disorders, diabetes, bacterial, and viral infections, as well as response to treatments can be partly due to their genomic variations. In this work, we attempted to predict the effect of SNPs of the key genes of antioxidant defense system on their structure, function, and expression in relation to COVID-19 pathogenesis using in silico tools. In addition, the effect of SNPs on the target site binding efficiency of SNPs was investigated as a factor with potential to change drug response or susceptibility to COVID-19. According to the predicted results, only six missense SNPs with minor allele frequency (MAF) ≥ 0.1 in the coding region of genes GPX7, GPX8, TXNRD2, GLRX5, and GLRX were able to strongly affect their structure and function. Our results predicted that 39 SNPs with MAF ≥ 0.1 led to the generation or destruction of miRNA-binding sites on target antioxidant genes from GPX, PRDX, GLRX, TXN, and SOD families. The results obtained from comparing the expression profiles of mild vs. severe COVID-19 patients using GEO2R demonstrated a significant change in the expression of approximately 250 miRNAs. The binding efficiency of 21 of these miRNAs was changed due to the elimination or generation of target sites in these genes. Altogether, this study reveals the fundamental role of the SNPs of antioxidant defense genes in COVID-19 progression and susceptibility of individuals to this virus. In addition, different responses of COVID-19 patients to antioxidant defense system enhancement drugs may be due to presence of these SNPs in different individuals.

16.
Ecotoxicol Environ Saf ; 276: 116315, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614001

RESUMO

This study explores the role of endogenous indole-3-acetic acid (IAA) in modulating plant responses to pollution stress and its effect on pollutant accumulation, with a focus on fluoranthene (Flu) in ryegrass. To elucidate the mechanism, we employed an IAA promoter (α-aminobutyric acid [α-AB]) and an IAA inhibitor (naphthylphthalamic acid [NPA]) to regulate IAA levels and analyze Flu uptake characteristics. The experimental setup included a Flu treatment group (ryegrass with Flu addition) and a control group (ryegrass without Flu). Our findings demonstrate that Flu treatment enhanced IAA content and plant growth in ryegrass compared to the control. The Flu+AB treatment further enhanced these effects, while the Flu+NPA treatment exhibited a contrasting trend. Moreover, Flu+AB treatment led to increased Flu accumulation, in contrast to the inhibitory effect observed with Flu+NPA treatment. Flu treatment also enhanced the activities of key antioxidant enzymes (SOD, POD, CAT) and increased soluble sugar and protein levels, indicative of enzymatic and nonenzymatic defense responses, respectively. The Flu+AB treatment amplified these responses, whereas the Flu+NPA treatment attenuated them. Significantly, Flu treatment raised H+-ATPase activity compared to the control, an effect further elevated by Flu+AB treatment and diminished by Flu+NPA treatment. A random forest analysis suggested that Flu accumulation dependency varied under different treatments: it relied more on H+-ATPase activity under Flu+AB treatment and more on SOD activity under Flu+NPA treatment. Additionally, Flu+AB treatment boosted the transpiration rate in ryegrass, thereby increasing the Flu translocation factor, a trend reversed by Flu+NPA treatment. This research highlights crucial factors influencing Flu accumulation in ryegrass, offering potential new avenues for controlling the gathering of contaminants within plant systems.


Assuntos
Fluorenos , Ácidos Indolacéticos , Lolium , Superóxido Dismutase , Fluorenos/toxicidade , Lolium/efeitos dos fármacos , Lolium/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Superóxido Dismutase/metabolismo , Poluentes do Solo/toxicidade , Reguladores de Crescimento de Plantas , Antioxidantes/metabolismo
17.
Ecotoxicol Environ Saf ; 274: 116181, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460406

RESUMO

The emergence of polyvinyl chloride (PVC) microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant toxic threats to soil ecosystems. Ajwain (Trachyspermum ammi L.), a plant of significant medicinal and culinary value, is increasingly subjected to environmental stressors that threaten its growth and productivity. This situation is particularly acute given the well-documented toxicity of chromium (Cr), which has been shown to adversely affect plant biomass and escalate risks to the productivity of such economically and therapeutically important species. The present study was conducted to investigate the individual effects of different levels of PVC-MPs (0, 2, and 4 mg L-1) and Cr (0, 150, and 300 mg kg-1) on various aspects of plant growth. Specifically, we examined growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress responses, antioxidant compound activity (both enzymatic and nonenzymatic), gene expression, sugar content, nutritional status, organic acid exudation, and Cr accumulation in different parts of Ajwain (Trachyspermum ammi L.) seedlings, which were also exposed to varying levels of titanium dioxide (TiO2) nanoparticles (NPs) (0, 25, and 50 µg mL-1). Results from the present study showed that the increasing levels of Cr and PVC-MPs in soils significantly decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. Conversely, increasing levels of Cr and PVC-MPs in the soil increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation pattern in the roots of T. ammi seedlings. Interestingly, the application of TiO2-NPs counteracted the toxicity of Cr and PVC-MPs in T. ammi seedlings, leading to greater growth and biomass. This protective effect is facilitated by the NPs' ability to sequester reactive oxygen species, thereby reducing oxidative stress and lowering Cr concentrations in both the roots and shoots of the plants. Our research findings indicated that the application of TiO2-NPs has been shown to enhance the resilience of T. ammi seedlings to Cr and PVC-MPs toxicity, leading to not only improved biomass but also a healthier physiological state of the plants. This was demonstrated by a more balanced exudation of organic acids, which is a critical response mechanism to metal stress.


Assuntos
Ammi , Poluentes do Solo , Titânio , Antioxidantes/metabolismo , Ammi/metabolismo , Microplásticos/metabolismo , Plásticos/metabolismo , Cromo/análise , Ecossistema , Estresse Oxidativo , Solo , Expressão Gênica , Poluentes do Solo/análise
18.
Allergol Immunopathol (Madr) ; 52(1): 65-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38186195

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a relapsing, chronic cutaneous inflammatory disease with onset, in general, in early childhood. Chronic skin inflammation is associated with overproduction of reactive oxygen species (ROS) such as superoxide and hydrogen peroxide. Oxidative stress, an imbalance between the production of free radicals and antioxidant defense, results in tissue inflammation due to the upregulation of genes that encode inflammatory cytokines. This condition plays an important role in the pathogenesis of AD. OBJECTIVE: To compare the antioxidant defense in children and adolescents with AD with that of healthy individuals and to verify the association of antioxidant defense with disease severity and nutritional status. METHODS: Cross-sectional study that evaluated 48 children and adolescents with AD and 25 controls for nutritional assessment (body mass index z score [BMIZ] and height for age z score [HAZ]) and levels of vitamins A, C, E, and D, zinc (Zn), copper (Cu), antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]), high-sensitivity C-reactive protein (CRP) and interleukin 33 (IL-33). RESULTS: There was no significant difference in the comparison between AD and control groups for serum levels of vitamins (A, D, C, and E), copper, and antioxidant enzymes. Serum zinc levels were higher in the AD group (ß = 24.20; 95% CI 13.95-34.91; P < 0.001) even after adjusting the BMIZ, HAZ, gender, IL-33, and CRP. Children and adolescents with moderate or severe AD compared to mild AD (SCORAD - 36.7±17.4 vs 11.8 ± 3.9; P < 0.001) had lower values of the vitamin E/total lipid ratio (3.68 [0.29;12.63] vs 5.92 [3.27;17.37]; P = 0.013). CONCLUSION: Children and adolescents with AD had higher concentrations OF elevated levels of zinc compared to controls, a fact not observed for other biomarkers of antioxidant defense. AD in moderate or severe forms presented lower concentrations of vitamin E, a potent antioxidant fat soluble.


Assuntos
Antioxidantes , Dermatite Atópica , Pré-Escolar , Criança , Adolescente , Humanos , Dermatite Atópica/epidemiologia , Interleucina-33 , Cobre , Estudos Transversais , Vitaminas , Vitamina E , Vitamina A , Inflamação , Gravidade do Paciente , Vitamina K , Zinco
19.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38674136

RESUMO

Cereal crops are crucial for global food security; however, they are susceptible to various environmental stresses that significantly hamper their productivity. In response, melatonin has emerged as a promising regulator, offering potential benefits for stress tolerance and crop growth. This review explores the effects of melatonin on maize, sorghum, millet, rice, barley, and wheat, aiming to enhance their resilience to stress. The application of melatonin has shown promising outcomes, improving water use efficiency and reducing transpiration rates in millet under drought stress conditions. Furthermore, it enhances the salinity and heavy metal tolerance of millet by regulating the activity of stress-responsive genes. Similarly, melatonin application in sorghum enhances its resistance to high temperatures, low humidity, and nutrient deficiency, potentially involving the modulation of antioxidant defense and aspects related to photosynthetic genes. Melatonin also exerts protective effects against drought, salinity, heavy metal, extreme temperatures, and waterlogging stresses in maize, wheat, rice, and barley crops by decreasing reactive oxygen species (ROS) production through regulating the antioxidant defense system. The molecular reactions of melatonin upregulated photosynthesis, antioxidant defense mechanisms, the metabolic pathway, and genes and downregulated stress susceptibility genes. In conclusion, melatonin serves as a versatile tool in cereal crops, bolstering stress resistance and promoting sustainable development. Further investigations are warranted to elucidate the underlying molecular mechanisms and refine application techniques to fully harness the potential role of melatonin in cereal crop production systems.


Assuntos
Produtos Agrícolas , Grão Comestível , Melatonina , Estresse Fisiológico , Melatonina/metabolismo , Melatonina/farmacologia , Grão Comestível/metabolismo , Grão Comestível/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Secas , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo
20.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928231

RESUMO

Ibogaine is an organic indole alkaloid that is used in alternative medicine to combat addiction. Numerous cases of life-threatening complications and sudden deaths associated with ibogaine use have been reported, and it has been hypothesized that the adverse effects are related to ibogaine's tendency to induce cardiac arrhythmias. Considering that the bioavailability of ibogaine and its primary metabolite noribogaine is two to three times higher in female rats than in male rats, we here investigated the effect of a single oral dose (1 or 20 mg/kg) of ibogaine on cardiac histopathology and oxidative/antioxidant balance. Our results show that ibogaine induced dose-dependent cardiotoxic necrosis 6 and 24 h after treatment and that this necrosis was not a consequence of inflammation. In addition, no consistent dose- and time-dependent changes in antioxidant defense or indicators of oxidative damage were observed. The results of this study may contribute to a better understanding of ibogaine-induced cardiotoxicity, which is one of the main side effects of ibogaine use in humans and is often fatal. Nevertheless, based on this experiment, it is not possible to draw a definitive conclusion regarding the role of redox processes or oxidative stress in the occurrence of cardiotoxic necrosis after ibogaine administration.


Assuntos
Ibogaína , Necrose , Oxirredução , Estresse Oxidativo , Animais , Ibogaína/análogos & derivados , Ibogaína/farmacologia , Ibogaína/efeitos adversos , Ratos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Masculino , Feminino , Cardiotoxicidade/etiologia , Cardiotoxicidade/patologia , Antioxidantes/farmacologia , Miocárdio/metabolismo , Miocárdio/patologia , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA