Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 39(24): e104719, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33215742

RESUMO

Recent evidence suggests that animal microRNAs (miRNAs) can target coding sequences (CDSs); however, the pathophysiological importance of such targeting remains unknown. Here, we show that a somatic heterozygous missense mutation (c.402C>G; p.C134W) in FOXL2, a feature shared by virtually all adult-type granulosa cell tumors (AGCTs), introduces a target site for miR-1236, which causes haploinsufficiency of the tumor-suppressor FOXL2. This miR-1236-mediated selective degradation of the variant FOXL2 mRNA is preferentially conducted by a distinct miRNA-loaded RNA-induced silencing complex (miRISC) directed by the Argonaute3 (AGO3) and DHX9 proteins. In both patients and a mouse model of AGCT, abundance of the inversely regulated variant FOXL2 with miR-1236 levels is highly correlated with malignant features of AGCT. Our study provides a molecular basis for understanding the conserved FOXL2 CDS mutation-mediated etiology of AGCT, revealing the existence of a previously unidentified mechanism of miRNA-targeting disease-associated mutations in the CDS by forming a non-canonical miRISC.


Assuntos
Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Tumor de Células da Granulosa/genética , MicroRNAs/metabolismo , Mutação , Fases de Leitura Aberta , Desequilíbrio Alélico , Animais , Apoptose , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Morte Celular/fisiologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Tumor de Células da Granulosa/patologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , MicroRNAs/genética , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma
2.
Virol J ; 17(1): 149, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33032637

RESUMO

BACKGROUND: In plants, the RNA silencing system functions as an antiviral defense mechanism following its induction with virus-derived double-stranded RNAs. This occurs through the action of RNA silencing components, including Dicer-like (DCL) nucleases, Argonaute (AGO) proteins, and RNA-dependent RNA polymerases (RDR). Plants encode multiple AGOs, DCLs, and RDRs. The functions of these components have been mainly examined in Arabidopsis thaliana and Nicotiana benthamiana. In this study, we investigated the roles of DCL2, DCL4, AGO2, AGO3 and RDR6 in tomato responses to viral infection. For this purpose, we used transgenic tomato plants (Solanum lycopersicum cv. Moneymaker), in which the expression of these genes were suppressed by double-stranded RNA-mediated RNA silencing. METHODS: We previously created multiple DCL (i.e., DCL2 and DCL4) (hpDCL2.4) and RDR6 (hpRDR6) knockdown transgenic tomato plants and here additionally did multiple AGO (i.e., AGO2 and AGO3) knockdown plants (hpAGO2.3), in which double-stranded RNAs cognate to these genes were expressed to induce RNA silencing to them. Potato virus X (PVX) and Y (PVY) were inoculated onto these transgenic tomato plants, and the reactions of these plants to the viruses were investigated. In addition to observation of symptoms, viral coat protein and genomic RNA were detected by western and northern blotting and reverse transcription-polymerase chain reaction (RT-PCR). Host mRNA levels were investigated by quantitative RT-PCR. RESULTS: Following inoculation with PVX, hpDCL2.4 plants developed a more severe systemic mosaic with leaf curling compared with the other inoculated plants. Systemic necrosis was also observed in hpAGO2.3 plants. Despite the difference in the severity of symptoms, the accumulation of PVX coat protein (CP) and genomic RNA in the uninoculated upper leaves was not obviously different among hpDCL2.4, hpRDR6, and hpAGO2.3 plants and the empty vector-transformed plants. Moneymaker tomato plants were asymptomatic after infection with PVY. However, hpDCL2.4 plants inoculated with PVY developed symptoms, including leaf curling. Consistently, PVY CP was detected in the uninoculated symptomatic upper leaves of hpDCL2.4 plants through western blotting. Of note, PVY CP was rarely detected in other asymptomatic transgenic or wild-type plants. However, PVY was detected in the uninoculated upper leaves of all the inoculated plants using reverse transcription-polymerase chain reactions. These findings indicated that PVY systemically infected asymptomatic Moneymaker tomato plants at a low level (i.e., no detection of CP via western blotting). CONCLUSION: Our results indicate that the tomato cultivar Moneymaker is susceptible to PVX and shows mild mosaic symptoms, whereas it is tolerant and asymptomatic to systemic PVY infection with a low virus titer. In contrast, in hpDCL2.4 plants, PVX-induced symptoms became more severe and PVY infection caused symptoms. These results indicate that DCL2, DCL4, or both contribute to tolerance to infection with PVX and PVY. PVY CP and genomic RNA accumulated to a greater extent in DCL2.4-knockdown plants. Hence, the contribution of these DCLs to tolerance to infection with PVY is at least partly attributed to their roles in anti-viral RNA silencing, which controls the multiplication of PVY in tomato plants. The necrotic symptoms observed in the PVX-infected hpAGO2.3 plants suggest that AGO2, AGO3 or both are also distinctly involved in tolerance to infection with PVX.


Assuntos
Doenças das Plantas/virologia , Potexvirus/genética , Potyvirus/genética , Interferência de RNA , RNA Viral/genética , Solanum lycopersicum/virologia , Proteínas Argonautas/genética , Proteínas do Capsídeo/genética , Folhas de Planta/virologia , RNA Polimerase Dependente de RNA/genética , Ribonuclease III/genética , Solanum tuberosum/virologia
3.
Dev Biol ; 385(2): 340-9, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24184635

RESUMO

PIWI proteins, a subfamily of the ARGONAUTE/PIWI protein family, have been implicated in transcriptional and posttranscriptional gene regulation and transposon silencing mediated by small non-coding RNAs, especially piRNAs. Although these proteins are known to be required for germline development, their somatic function remains elusive. Here, we examine the maternal function of all three PIWI proteins in Drosophila; Piwi, Aubergine (Aub) and Argonaute3 (Ago3) during early embryogenesis. In syncytial embryos, Piwi displays an embryonic stage-dependent localization pattern. Piwi is localized in the cytoplasm during mitotic cycles 1-10. Between cycles 11 and 14, Piwi remains in the cytoplasm during mitosis but moves into the somatic nucleus during interphase. Beyond cycle 14, it stays in the nucleus. Aub and Ago3 are diffusely cytoplasmic from cycle 1 to 14. Embryos maternally depleted of any one of the three PIWI proteins display severe mitotic defects, including abnormal chromosome and nuclear morphology, cell cycle arrest, asynchronous nuclear division and aberrant nuclear migration. Furthermore, all three PIWI proteins are required for the assembly of mitotic machinery and progression through mitosis. Embryos depleted of maternal PIWI proteins also exhibit chromatin organization abnormalities. These observations indicate that maternal Piwi, Aub and Ago3 play a critical role in the maintenance of chromatin structure and cell cycle progression during early embryogenesis, with compromised chromatin integrity as a possible cause of the observed mitotic defects. Our study demonstrates the essential function of PIWI proteins in the first phase of somatic development.


Assuntos
Proteínas Argonautas/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Desenvolvimento Embrionário/fisiologia , Animais
4.
RNA Biol ; 10(10): 1631-43, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24100239

RESUMO

MicroRNA duplices are separated into a guide and a passenger strand. By convention, the guide represents the active microRNA while the passenger is supposedly degraded. However, passenger strands also emerge as active microRNAs. It is unknown whether the guide-to-passenger-strand ratio can be actively regulated and which factors influence strand incorporation into the RISC. Here, we identify a microRNA with a variable guide-to-passenger-strand ratio along with its regulatory factor: Human Argonaute-3 specifically enhances the passenger strand expression and activity of the tumor suppressor microRNA let-7a. This post-maturational effect is mediated by the Ago3 PAZ and MID domains yielding an elevated affinity for let-7a-3p. Notably, this is independent of the 5'-terminal basepair stability, challenging the universality of the respective rule for microRNA strand selection. Thus, this study uncovers the first protein regulator of the ratio between microRNA guide and passenger strand expression and activity.


Assuntos
Proteínas Argonautas/metabolismo , MicroRNAs/metabolismo , Proteínas Argonautas/química , Hemina/metabolismo , Humanos , MicroRNAs/química , Estrutura Terciária de Proteína , Termodinâmica
5.
Reprod Biol ; 21(1): 100479, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33444963

RESUMO

We aimed to investigate the biological roles of Argonaute 3 (AGO3) in cervical cancer. RNA profiles containing 306 cervical cancer tissues and 13 normal samples revealed that AGO3 was significantly up-regulated in cervical cancer, and the expression of AGO3 was negatively associated with the outcome of cervical cancer patients. Cell proliferation and transwell assays showed that the depletion of AGO3 markedly inhibited cervical cancer cell growth and mobility. Importantly, we detected that knockdown of AGO3 exerted suppressive effect on cellular behaviors via inactivating Wnt/ß-catenin signaling pathway. Collectively, we conclude that AGO3 is a novel tumor promoter in cervical cancer and has a potential to be a drug target and prognostic predictor of cervical cancer patients.


Assuntos
Proteínas Argonautas/metabolismo , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Proteínas Argonautas/genética , Linhagem Celular , Ensaios de Migração Celular , Sobrevivência Celular , Colo do Útero/citologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Transdução de Sinais , Proteínas Wnt/genética , beta Catenina/genética
6.
Gene ; 537(1): 149-53, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24361206

RESUMO

piRNAs (piwi-interacting RNAs) are a class of small interfering RNAs that play a major role in the regulation of transposable elements (TEs) in Drosophila and are considered of fundamental importance in gonadal development. Genes encoding the effectors of the piRNA machinery are thus often thought to be highly constrained. On the contrary, as actors of genetic immunity, these genes have also been shown to evolve rapidly and display a high level of sequence variability. In order to assess the support for these competing models, we analyzed seven genes of the piRNA pathway using a collection of wild-type strains of Drosophila simulans, which are known to display significant variability in their TE content between strains. We showed that these genes exhibited wide variation in transcript levels, and we discuss some evolutionary considerations regarding the observed variability in TE copy numbers.


Assuntos
Elementos de DNA Transponíveis , Proteínas de Drosophila/genética , Drosophila/genética , RNA Interferente Pequeno/genética , Animais , Drosophila/imunologia , Evolução Molecular , Dosagem de Genes , Regulação da Expressão Gênica , Variação Genética
7.
Gene ; 534(2): 240-8, 2014 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-24211384

RESUMO

The Piwi genes have an important role in stem cell development, gametogenesis and RNA interference in diverse organisms. So far, most of the studies have focused on the function of Piwis in vertebrates, but their function during spermiogenesis in invertebrates still remains largely unclear. In order to investigate the function of Piwis during spermiogenesis in the crab Portunus trituberculatus, we use RT-PCR and RACE to identify three Piwi complete cDNA sequences from the total RNA of the testis in P. trituberculatus. The deduced amino acid sequences of P. trituberculatus Piwi-1, Piwi-2 and Piwi-3 showed that each contains a well-conserved PAZ domain and PIWI domain. RT-PCR analyzed the tissue expression pattern of P. trituberculatus Piwi-1, Piwi-2 and Piwi-3 in the testis, heart, muscle, hepatopancreas and gill. All of the Piwis are found in germ cells of adult testis in P. trituberculatus by in situ hybridization, suggesting that these genes may play function during spermiogenesis in this species.


Assuntos
Braquiúros/genética , Espermatogênese/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular/métodos , DNA Complementar/genética , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína/genética , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA