Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.638
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; 300(8): 107496, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925325

RESUMO

Emerging Artemisinin (ART) resistance in Plasmodium falciparum (Pf) poses challenges for the discovery of novel drugs to tackle ART-resistant parasites. Concentrated efforts toward the ART resistance mechanism indicated a strong molecular link of ART resistance with upregulated expression of unfolded protein response pathways involving Prefoldins (PFDs). However, a complete characterization of PFDs as molecular players taking part in ART resistance mechanism, and discovery of small molecule inhibitors to block this process have not been identified to date. Here, we functionally characterized all Pf Prefoldin subunits (PFD1-6) and established a causative role played by PFDs in ART resistance by demonstrating their expression in intra-erythrocytic parasites along with their interactions with Kelch13 protein through immunoprecipitation coupled MS/MS analysis. Systematic biophysical interaction analysis between all subunits of PFDs revealed their potential to form a complex. The role of PFDs in ART resistance was confirmed in orthologous yeast PFD6 mutants, where PfPFD6 expression in yeast mutants reverted phenotype to ART resistance. We identified an FDA-approved drug "Biperiden" that restricts the formation of Prefoldin complex and inhibits its interaction with its key parasite protein substrates, MSP-1 and α-tubulin-I. Moreover, Biperiden treatment inhibits the parasite growth in ART-sensitive Pf3D7 and resistant Pf3D7k13R539T strains. Ring survival assays that are clinically relevant to analyze ART resistance in Pf3D7k13R539T parasites demonstrate the potency of BPD to inhibit the growth of survivor parasites. Overall, our study provides the first evidence of the role of PfPFDs in ART resistance mechanisms and opens new avenues for the management of resistant parasites.

2.
Annu Rev Microbiol ; 74: 431-454, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32905757

RESUMO

Understanding and controlling the spread of antimalarial resistance, particularly to artemisinin and its partner drugs, is a top priority. Plasmodium falciparum parasites resistant to chloroquine, amodiaquine, or piperaquine harbor mutations in the P. falciparum chloroquine resistance transporter (PfCRT), a transporter resident on the digestive vacuole membrane that in its variant forms can transport these weak-base 4-aminoquinoline drugs out of this acidic organelle, thus preventing these drugs from binding heme and inhibiting its detoxification. The structure of PfCRT, solved by cryogenic electron microscopy, shows mutations surrounding an electronegative central drug-binding cavity where they presumably interact with drugs and natural substrates to control transport. P. falciparum susceptibility to heme-binding antimalarials is also modulated by overexpression or mutations in the digestive vacuole membrane-bound ABC transporter PfMDR1 (P. falciparum multidrug resistance 1 transporter). Artemisinin resistance is primarily mediated by mutations in P. falciparum Kelch13 protein (K13), a protein involved in multiple intracellular processes including endocytosis of hemoglobin, which is required for parasite growth and artemisinin activation. Combating drug-resistant malaria urgently requires the development of new antimalarial drugs with novel modes of action.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Proteínas de Membrana Transportadoras/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Mutação , Quinolinas/farmacologia , Quinolinas/uso terapêutico
3.
J Infect Dis ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083679

RESUMO

Malaria elimination relies on detection of Plasmodium falciparum Histidine-Rich Proteins 2/3 (HRP2/3) through rapid diagnostic tests (RDTs) and treatment with artemisinin-combination therapies (ACTs). Data from the Horn of Africa suggest increasing hrp2/3 gene deletions and ACT partial resistance kelch13 (k13) mutations. To assess this, 233 samples collected during a national survey from 7 regions of Ethiopia were studied for hrp2/3 deletions by droplet digital dPCR and k13 mutations by DNA sequencing. Approximately 22% of the study population harbored complete hrp2/3 deletions by ddPCR. Thirty-two of 42 of k13 SNPs identified were R622I associated with ACT partial resistance. Both hrp2/3 deletions and k13 mutations associated with ACT partial resistance appear to be co-occurring especially in Northwest Ethiopia. Ongoing national surveillance relying on accurate laboratory methods are required to fully elaborate the genetic diversity of P. falciparum to inform public health policy makers.

4.
Med Res Rev ; 44(1): 66-137, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37222435

RESUMO

The demand for novel, fast-acting, and effective antimalarial medications is increasing exponentially. Multidrug resistant forms of malarial parasites, which are rapidly spreading, pose a serious threat to global health. Drug resistance has been addressed using a variety of strategies, such as targeted therapies, the hybrid drug idea, the development of advanced analogues of pre-existing drugs, and the hybrid model of resistant strains control mechanisms. Additionally, the demand for discovering new potent drugs grows due to the prolonged life cycle of conventional therapy brought on by the emergence of resistant strains and ongoing changes in existing therapies. The 1,2,4-trioxane ring system in artemisinin (ART) is the most significant endoperoxide structural scaffold and is thought to be the key pharmacophoric moiety required for the pharmacodynamic potential of endoperoxide-based antimalarials. Several derivatives of artemisinin have also been found as potential treatments for multidrug-resistant strain in this area. Many 1,2,4-trioxanes, 1,2,4-trioxolanes, and 1,2,4,5-tetraoxanes derivatives have been synthesised as a result, and many of these have shown promise antimalarial activity both in vivo and in vitro against Plasmodium parasites. As a consequence, efforts to develop a functionally straight-forward, less expensive, and vastly more effective synthetic pathway to trioxanes continue. This study aims to give a thorough examination of the biological properties and mode of action of endoperoxide compounds derived from 1,2,4-trioxane-based functional scaffolds. The present system of 1,2,4-trioxane, 1,2,4-trioxolane, and 1,2,4,5-tetraoxane compounds and dimers with potentially antimalarial activity will be highlighted in this systematic review (January 1963-December 2022).


Assuntos
Antimaláricos , Artemisininas , Tetraoxanos , Humanos , Antimaláricos/química , Artemisininas/farmacologia , Artemisininas/química , Plasmodium falciparum , Revisões Sistemáticas como Assunto , Tetraoxanos/farmacologia , Tetraoxanos/química
5.
BMC Genomics ; 25(1): 776, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123103

RESUMO

BACKGROUND: Transcription factors (TFs) of plant-specific SHORT INTERNODES (SHI) family play a significant role in regulating development and metabolism in plants. In Artemisia annua, various TFs from different families have been discovered to regulate the accumulation of artemisinin. However, specific members of the SHI family in A. annua (AaSHIs) have not been identified to regulate the biosynthesis of artemisinin. RESULTS: We found five AaSHI genes (AaSHI1 to AaSHI5) in the A. annua genome. The expression levels of AaSHI1, AaSHI2, AaSHI3 and AaSHI4 genes were higher in trichomes and young leaves, also induced by light and decreased when the plants were subjected to dark treatment. The expression pattern of these four AaSHI genes was consistent with the expression pattern of four structural genes of artemisinin biosynthesis and their specific regulatory factors. Dual-luciferase reporter assays, yeast one-hybrid assays, and transient transformation in A. annua provided the evidence that AaSHI1 could directly bind to the promoters of structural genes AaADS and AaCYP71AV1, and positively regulate their expressions. This study has presented candidate genes, with AaSHI1 in particular, that can be considered for the metabolic engineering of artemisinin biosynthesis in A. annua. CONCLUSIONS: Overall, a genome-wide analysis of the AaSHI TF family of A. annua was conducted. Five AaSHIs were identified in A. annua genome. Among the identified AaSHIs, AaSHI1 was found to be localized to the nucleus and activate the expression of structural genes of artemisinin biosynthesis including AaADS and AaCYP71AV1. These results indicated that AaSHI1 had positive roles in modulating artemisinin biosynthesis, providing candidate genes for obtaining high-quality new A. annua germplasms.


Assuntos
Artemisia annua , Artemisininas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Artemisia annua/genética , Artemisia annua/metabolismo , Artemisininas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Filogenia
6.
BMC Immunol ; 25(1): 16, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347480

RESUMO

OBJECTIVE: The study aimed to explore the mechanism of artemisinin in treating primary Sjögren's syndrome (pSS) based on network pharmacology and experimental validation. METHODS: Relevant targets of the artemisinin and pSS-related targets were integrated by public databases online. An artemisinin-pSS network was constructed by Cytoscape. The genes of artemisinin regulating pSS were imported into STRING database to construct a protein-protein interaction (PPI) network in order to predict the key targets. The enrichment analyses were performed to predict the crucial mechanism and pathway of artemisinin against pSS. The active component of artemisinin underwent molecular docking with the key proteins. Artemisinin was administered intragastrically to SS-like NOD/Ltj mice to validate the efficacy and critical mechanisms. RESULTS: Network Pharmacology analysis revealed that artemisinin corresponded to 412 targets, and pSS related to 1495 genes. There were 40 intersection genes between artemisinin and pSS. KEGG indicated that therapeutic effects of artemisinin on pSS involves IL-17 signaling pathway, HIF-1 signaling pathway, apoptosis signaling pathway, Th17 cell differentiation, PI3K-Akt signaling pathway, and MAPK signaling pathway. Molecular docking results further showed that the artemisinin molecule had higher binding energy by combining with the key nodes in IL-17 signaling pathway. In vivo experiments suggested artemisinin can restored salivary gland secretory function and improve the level of glandular damage of NOD/Ltj mice. It contributed to the increase of regulatory T cells (Tregs) and the downregulated secretion of IL-17 in NOD/Ltj model. CONCLUSION: The treatment of pSS with artemisinin is closely related to modulating the balance of Tregs and Th17 cells via T cell differentiation.


Assuntos
Artemisininas , Síndrome de Sjogren , Camundongos , Animais , Camundongos Endogâmicos NOD , Interleucina-17 , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Síndrome de Sjogren/tratamento farmacológico , Artemisininas/farmacologia , Artemisininas/uso terapêutico
7.
Antimicrob Agents Chemother ; 68(1): e0129923, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38092677

RESUMO

In 2023, we updated data collected since 2010 on Plasmodium falciparum K13 and MDR1 drug resistance markers in Huye district, southern Rwanda. Artemisinin resistance-associated PfK13 markers occurred in 17.5% of 212 malaria patients (561H, 9.0%; 675V, 5.7%; and 469F, 2.8%), nearly double the frequency from 2019. PfMDR1 N86, linked with lumefantrine tolerance, was close to fixation at 98%. In southern Rwanda, markers signaling resistance to artemisinin and lumefantrine are increasing, albeit at a relatively slow rate.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Ruanda/epidemiologia , Prevalência , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Lumefantrina/uso terapêutico , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
8.
Antimicrob Agents Chemother ; : e0157623, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136465

RESUMO

The emergence of drug-resistant Plasmodium falciparum parasites in sub-Saharan Africa will substantially challenge malaria control. Here, we evaluated the frequency of common drug resistance markers among adolescents from Northern Uganda with asymptomatic infections. We used an established amplicon deep sequencing strategy to screen dried blood spot samples collected from 2016 to 2017 during a reported malaria epidemic within the districts of Kitgum and Pader in Northern Uganda. We screened single-nucleotide polymorphisms within: kelch13 (Pfk13), dihydropteroate synthase (Pfdhps), multidrug resistance-1 (Pfmdr1), dihydrofolate reductase (Pfdhfr), and apical membrane antigen (Pfama1) genes. Within the study population, the median age was 15 years (14.3-15.0, 95% CI), and 54.9% (78/142) were Plasmodium positive by 18S rRNA qPCR, which were subsequently targeted for sequencing analysis. We observed a high frequency of resistance markers particularly for sulfadoxine-pyrimethamine (SP), with no wild-type-only parasites observed for Pfdhfr (N51I, C59R, and S108N) and Pfdhps (A437G and K540E) mutations. Within Pfmdr1, mixed infections were common for NF/NY (98.5%). While for artemisinin resistance, in kelch13, there was a high frequency of C469Y (34%). Using the pattern for Pfama1, we found a high level of polygenomic infections with all individuals presenting with complexity of infection greater than 2 with a median of 6.9. The high frequency of the quintuple SP drug-resistant parasites and the C469Y artemisinin resistance-associated mutation in asymptomatic individuals suggests an earlier high prevalence than previously reported from symptomatic malaria surveillance studies (in 2016/2017). Our data demonstrate the urgency for routine genomic surveillance programs throughout Africa and the value of deep sequencing.

9.
Antimicrob Agents Chemother ; 68(8): e0165923, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39028193

RESUMO

Artemisinin-based combination therapies (ACTs) were introduced as the standard of care for uncomplicated malaria in Africa almost two decades ago. Recent studies in East Africa have reported a gradual increase in kelch13 (k13) mutant parasites associated with reduced artesunate efficacy. As part of the Community Access to Rectal Artesunate for Malaria project, we collected blood samples from 697 children with signs of severe malaria in northern Uganda between 2018 and 2020, before and after the introduction of rectal artesunate (RAS) in 2019. K13 polymorphisms were assessed, and parasite editing and phenotyping were performed to assess the impact of mutations on parasite resistance. Whole-genome sequencing was performed, and haplotype networks were constructed to determine the geographic origin of k13 mutations. Of the 697 children, 540 were positive for Plasmodium falciparum malaria by PCR and were treated with either RAS or injectable artesunate monotherapy followed in most cases by ACT. The most common k13 mutation was C469Y (6.7%), which was detected more frequently in samples collected after RAS introduction. Genome editing confirmed reduced in vitro susceptibility to artemisinin in C469Y-harboring parasites compared to wild-type controls (P < 0.001). The haplotypic network showed that flanking regions of the C469Y mutation shared the same African genetic background, suggesting a single and indigenous origin of the mutation. Our data provide evidence of selection for the artemisinin-resistant C469Y mutation. The realistic threat of multiresistant parasites emerging in Africa should encourage careful monitoring of the efficacy of artemisinin derivatives and strict adherence to ACT treatment regimens.


Assuntos
Antimaláricos , Artemisininas , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Uganda , Artemisininas/uso terapêutico , Artemisininas/farmacologia , Humanos , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Mutação , Artesunato/uso terapêutico , Artesunato/farmacologia , Pré-Escolar , Criança , Masculino , Feminino
10.
Antimicrob Agents Chemother ; 68(7): e0014324, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38899927

RESUMO

In response to the spread of artemisinin (ART) resistance, ART-based hybrid drugs were developed, and their activity profile was characterized against drug-sensitive and drug-resistant Plasmodium falciparum parasites. Two hybrids were found to display parasite growth reduction, stage-specificity, speed of activity, additivity of activity in drug combinations, and stability in hepatic microsomes of similar levels to those displayed by dihydroartemisinin (DHA). Conversely, the rate of chemical homolysis of the peroxide bonds is slower in hybrids than in DHA. From a mechanistic perspective, heme plays a central role in the chemical homolysis of peroxide, inhibiting heme detoxification and disrupting parasite heme redox homeostasis. The hybrid exhibiting slow homolysis of peroxide bonds was more potent in reducing the viability of ART-resistant parasites in a ring-stage survival assay than the hybrid exhibiting fast homolysis. However, both hybrids showed limited activity against ART-induced quiescent parasites in the quiescent-stage survival assay. Our findings are consistent with previous results showing that slow homolysis of peroxide-containing drugs may retain activity against proliferating ART-resistant parasites. However, our data suggest that this property does not overcome the limited activity of peroxides in killing non-proliferating parasites in a quiescent state.


Assuntos
Antimaláricos , Artemisininas , Plasmodium falciparum , Artemisininas/farmacologia , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Resistência a Medicamentos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Humanos , Testes de Sensibilidade Parasitária , Animais , Peróxidos/farmacologia
11.
Funct Integr Genomics ; 24(1): 26, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329581

RESUMO

The medicinal herb Artemisia annua L. is prized for its capacity to generate artemisinin, which is used to cure malaria. Potentially influencing the biomass and secondary metabolite synthesis of A. annua is plant nutrition, particularly phosphorus (P). However, most soil P exist as insoluble inorganic and organic phosphates, which results to low P availability limiting plant growth and development. Although plants have developed several adaptation strategies to low P levels, genetics and metabolic responses to P status remain largely unknown. In a controlled greenhouse experiment, the sparingly soluble P form, hydroxyapatite (Ca5OH(PO4)3/CaP) was used to simulate calcareous soils with low P availability. In contrast, the soluble P form KH2PO4/KP was used as a control. A. annua's morphological traits, growth, and artemisinin concentration were determined, and RNA sequencing was used to identify the differentially expressed genes (DEGs) under two different P forms. Total biomass, plant height, leaf number, and stem diameter, as well as leaf area, decreased by 64.83%, 27.49%, 30.47%, 38.70%, and 54.64% in CaP compared to KP; however, LC-MS tests showed an outstanding 37.97% rise in artemisinin content per unit biomass in CaP contrary to KP. Transcriptome analysis showed 2015 DEGs (1084 up-regulated and 931 down-regulated) between two P forms, including 39 transcription factor (TF) families. Further analysis showed that DEGs were mainly enriched in carbohydrate metabolism, secondary metabolites biosynthesis, enzyme catalytic activity, signal transduction, and so on, such as tricarboxylic acid (TCA) cycle, glycolysis, starch and sucrose metabolism, flavonoid biosynthesis, P metabolism, and plant hormone signal transduction. Meanwhile, several artemisinin biosynthesis genes were up-regulated, including DXS, GPPS, GGPS, MVD, and ALDH, potentially increasing artemisinin accumulation. Furthermore, 21 TF families, including WRKY, MYB, bHLH, and ERF, were up-regulated in reaction to CaP, confirming their importance in P absorption, internal P cycling, and artemisinin biosynthesis regulation. Our results will enable us to comprehend how low P availability impacts the parallel transcriptional control of plant development, growth, and artemisinin production in A. annua. This study could lay the groundwork for future research into the molecular mechanisms underlying A. annua's low P adaptation.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/genética , Fertilizantes , Perfilação da Expressão Gênica , Lagos , Fósforo
12.
Mol Med ; 30(1): 35, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454322

RESUMO

BACKGROUND: Neuronal ferroptosis plays a critical role in the pathogenesis of cognitive deficits. The present study explored whether artemisinin protected type 2 diabetes mellitus (T2DM) mice from cognitive impairments by attenuating neuronal ferroptosis in the hippocampal CA1 region. METHODS: STZ-induced T2DM mice were treated with artemisinin (40 mg/kg, i.p.), or cotreated with artemisinin and Nrf2 inhibitor MEL385 or ferroptosis inducer erastin for 4 weeks. Cognitive performance was determined by the Morris water maze and Y maze tests. Hippocampal ROS, MDA, GSH, and Fe2+ contents were detected by assay kits. Nrf2, p-Nrf2, HO-1, and GPX4 proteins in hippocampal CA1 were assessed by Western blotting. Hippocampal neuron injury and mitochondrial morphology were observed using H&E staining and a transmission electron microscope, respectively. RESULTS: Artemisinin reversed diabetic cognitive impairments, decreased the concentrations of ROS, MDA and Fe2+, and increased the levels of p-Nr2, HO-1, GPX4 and GSH. Moreover, artemisinin alleviated neuronal loss and ferroptosis in the hippocampal CA1 region. However, these neuroprotective effects of artemisinin were abolished by Nrf2 inhibitor ML385 and ferroptosis inducer erastin. CONCLUSION: Artemisinin effectively ameliorates neuropathological changes and learning and memory decline in T2DM mice; the underlying mechanism involves the activation of Nrf2 to inhibit neuronal ferroptosis in the hippocampus.


Assuntos
Artemisininas , Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Ferroptose , Animais , Camundongos , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Hipocampo , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Neurônios
13.
Eur J Immunol ; 53(4): e2250100, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36648433

RESUMO

Autoimmune hepatitis (AIH) eventually progresses to liver fibrosis, cirrhosis, and even hepatocellular carcinoma, causing irreversible damage to the liver. Concanavalin A-induced hepatitis in mice is a well-established model with pathophysiology similar to that of immune-mediated liver injury in human viral and autoimmune hepatitis, and it has been widely used to explore the pathogenesis and clinical treatment of human immune hepatitis. Artemisinin has been shown to exhibit anti-inflammatory effects through unclear mechanisms. In this study, we aimed to assess the effect of the artemisinin derivative TPN10466 on AIH. In vitro studies showed that TPN10466 dose dependently inhibited the percentage of IFN-γ-producing T cells. Further studies showed that TPN10466 attenuated the disease severity of AIH by downregulating the ability of lymphocytes to secrete IFN-γ and by reducing lymphocyte number in the liver. In addition, we found that TPN10466 treatment reduced T-cell responses by inhibiting JNK, ERK, and p38 pathways. In conclusion, our work suggests that TPN10466 provides protection against the autoimmune disease AIH by suppressing the inflammatory response of T cells, suggesting that TPN10466 may be a promising potential agent for the treatment of AIH.


Assuntos
Artemisininas , Hepatite Autoimune , Animais , Humanos , Camundongos , Artemisininas/metabolismo , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Concanavalina A/metabolismo , Concanavalina A/farmacologia , Concanavalina A/uso terapêutico , Hepatite Autoimune/tratamento farmacológico , Fígado/patologia , Sistema de Sinalização das MAP Quinases
14.
Planta ; 259(6): 152, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735012

RESUMO

MAIN CONCLUSION: Overexpression of Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT) leads to enhanced artemisinin content in Artemisia annua. Artemisinin-based combination therapies remain the sole deterrent against deadly disease malaria and Artemisia annua remains the only natural producer of artemisinin. In this study, the 1101 bp gene S-adenosyl-L-methionine (SAM): Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT), was characterised from A. annua, which converts jasmonic acid (JA) to methyl jasmonate (MeJA). From phylogenetic analysis, we confirmed that AaJMT shares a common ancestor with Arabidopsis thaliana, Eutrema japonica and has a close homology with JMT of Camellia sinensis. Further, the Clustal Omega depicted that the conserved motif I, motif III and motif SSSS (serine) required to bind SAM and JA, respectively, are present in AaJMT. The relative expression of AaJMT was induced by wounding, MeJA and salicylic acid (SA) treatments. Additionally, we found that the recombinant AaJMT protein catalyses the synthesis of MeJA from JA with a Km value of 37.16 µM. Moreover, site-directed mutagenesis of serine-151 in motif SSSS to tyrosine, asparagine-10 to threonine and glutamine-25 to histidine abolished the enzyme activity of AaJMT, thus indicating their determining role in JA substrate binding. The GC-MS analysis validated that mutant proteins of AaJMT were unable to convert JA into MeJA. Finally, the artemisinin biosynthetic and trichome developmental genes were upregulated in AaJMT overexpression transgenic lines, which in turn increased the artemisinin content.


Assuntos
Acetatos , Artemisia annua , Artemisininas , Ciclopentanos , Metiltransferases , Oxilipinas , Filogenia , Artemisia annua/genética , Artemisia annua/enzimologia , Artemisia annua/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Artemisininas/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Metiltransferases/metabolismo , Metiltransferases/genética , Acetatos/farmacologia , Acetatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regulação da Expressão Gênica de Plantas , Ácido Salicílico/metabolismo
15.
Plant Biotechnol J ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189077

RESUMO

Artemisinin, the well-known natural product for treating malaria, is biosynthesised and stored in the glandular-secreting trichomes (GSTs) of Artemisia annua. While numerous efforts have clarified artemisinin metabolism and regulation, the molecular association between artemisinin biosynthesis and GST development remains elusive. Here, we identified AaMYC3, a bHLH transcription factor of A. annua, induced by jasmonic acid (JA), which simultaneously regulates GST density and artemisinin biosynthesis. Overexpressing AaMYC3 led to a substantial increase in GST density and artemisinin accumulation. Conversely, in the RNAi-AaMYC3 lines, both GST density and artemisinin content were markedly reduced. Through RNA-seq and analyses conducted both in vivo and in vitro, AaMYC3 not only directly activates AaHD1 transcription, initiating GST development, but also up-regulates the expression of artemisinin biosynthetic genes, including CYP71AV1 and ALDH1, thereby promoting artemisinin production. Furthermore, AaMYC3 acts as a co-activator, interacting with AabHLH1 and AabHLH113, to trigger the transcription of two crucial enzymes in the artemisinin biosynthesis pathway, ADS and DBR2, ultimately boosting yield. Our findings highlight a critical connection between GST initiation and artemisinin biosynthesis in A. annua, providing a new target for molecular design breeding of traditional Chinese medicine.

16.
BMC Cancer ; 24(1): 971, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118085

RESUMO

BACKGROUND: Urinary bladder cancer, is the 10th most common global cancer, diagnosed in over 600,000 people causing 200,000 deaths annually. Artemisinin and its derivatives are safe compounds that have recently been proven to possess potent anti-tumor effects in vivo, through inhibition of cancer cell growth. The aim of this study is to assess the efficiency of artemisinin as a cancer treatment alone and as a pre-treatment fore cisplatin therapy for high grade urothelial carcinoma. METHODS: Sixty male albino mice were divided into six groups, and BBN was used to induce urinary bladder cancer. Blood samples were tested for renal functions and complete blood counts, kidney and urinary bladder tissues were harvested for histopathological examination. Total RNAs from urinary bladder tissues was collected, and gene expression of FGFR3, HRAS, P53, and KDM6A was quantified using qRT-PCR. RESULTS: Compared to the induced cancer group, the results revealed that FGFR3 expression levels were down-regulated in the induced cancer group treated by artemisinin only and the induced cancer group pre-treated with artemisinin prior to cisplatin by ~ 0.86-fold and 0.4-folds, respectively, aligning with HRAS down-regulation by ~ 9.54-fold and 9.05-fold, respectively. Whereas, P53 expression levels were up-regulated by ~ 0.68-fold and 0.84-fold, respectively, in parallel with KDM6A expression, which is up-regulated by ~ 0.95-folds and 5.27-folds, respectively. Also, serum creatinine and urea levels decreased significantly in the induced cancer group treated by artemisinin alone and the induced cancer group pre-treated with artemisinin prior to cisplatin, whereas the induced cancer group treated by cisplatin their levels increased significantly. Moreover, Hb, PLT, RBC, and WBC counts improved in both cancer groups treated by artemisinin alone and pre-treated with artemisinin prior to cisplatin. Histologically, in kidney tissues, artemisinin pre-treatment significantly reduced renal injury caused by cisplatin. While Artemisinin treatment for cancer in bladder tissues reverted invasive urothelial carcinoma to moderate urothelial dysplasia. CONCLUSIONS: This study indicates that artemisinin demonstrated a significant effect in reversal of the multi-step carcinogenesis process of high grade urothelial carcinoma and could enhance the effect of cisplatin therapy using artemisinin pre-treatment.


Assuntos
Artemisininas , Cisplatino , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Proteína Supressora de Tumor p53 , Neoplasias da Bexiga Urinária , Animais , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Masculino , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Camundongos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Humanos , Modelos Animais de Doenças , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
17.
Malar J ; 23(1): 36, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287365

RESUMO

BACKGROUND: Timely molecular surveillance of Plasmodium falciparum kelch 13 (k13) gene mutations is essential for monitoring the emergence and stemming the spread of artemisinin resistance. Widespread artemisinin resistance, as observed in Southeast Asia, would reverse significant gains that have been made against the malaria burden in Africa. The purpose of this study was to assess the prevalence of k13 polymorphisms in western Kenya and Ethiopia at sites representing varying transmission intensities between 2018 and 2022. METHODS: Dried blood spot samples collected through ongoing passive surveillance and malaria epidemiological studies, respectively, were investigated. The k13 gene was genotyped in P. falciparum isolates with high parasitaemia: 775 isolates from four sites in western Kenya (Homa Bay, Kakamega, Kisii, and Kombewa) and 319 isolates from five sites across Ethiopia (Arjo, Awash, Gambella, Dire Dawa, and Semera). DNA sequence variation and neutrality were analysed within each study site where mutant alleles were detected. RESULTS: Sixteen Kelch13 haplotypes were detected in this study. Prevalence of nonsynonymous k13 mutations was low in both western Kenya (25/783, 3.19%) and Ethiopia (5/319, 1.57%) across the study period. Two WHO-validated mutations were detected: A675V in three isolates from Kenya and R622I in four isolates from Ethiopia. Seventeen samples from Kenya carried synonymous mutations (2.17%). No synonymous mutations were detected in Ethiopia. Genetic variation analyses and tests of neutrality further suggest an excess of low frequency polymorphisms in each study site. Fu and Li's F test statistic in Semera was 0.48 (P > 0.05), suggesting potential population selection of R622I, which appeared at a relatively high frequency (3/22, 13.04%). CONCLUSIONS: This study presents an updated report on the low frequency of k13 mutations in western Kenya and Ethiopia. The WHO-validated R622I mutation, which has previously only been reported along the north-west border of Ethiopia, appeared in four isolates collected from eastern Ethiopia. The rapid expansion of R622I across Ethiopia signals the need for enhanced monitoring of the spread of drug-resistant P. falciparum parasites in East Africa. Although ACT remains currently efficacious in the study areas, continued surveillance is necessary to detect early indicators of artemisinin partial resistance.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Quênia/epidemiologia , Etiópia/epidemiologia , Resistência a Medicamentos/genética , Artemisininas/uso terapêutico , Malária Falciparum/parasitologia , Mutação , Antiparasitários , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
18.
Malar J ; 23(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166910

RESUMO

BACKGROUND: Patients' adherence to artemisinin-based combination therapy (ACT) is a malaria control strategy. Studies report varied experiences regarding patients' adherence to ACT. The study aimed at determining factors influencing patients' adherence to ACT for malaria in Kamuli, Uganda. METHODS: In a longitudinal study, 1266 participants at 8 public health facilities were enrolled. Equal numbers (422) were assigned to the three arms (no follow-up, day 2 and day 4). To establish the mean difference between groups, Student t-test was used and a chi-square test was used for proportionality. A multivariate logistic regression analysis was used to establish the influence of predictor variables on the dependent variable. Statistical significance was established at p < 0.05. RESULTS: A total of 844 patients were analysed. The median age was 20 years, majority (64.3%) were females. Overall patients' adherence was 588/844 (69.7%). At bivariate level, age (t-test = 2.258, p = 0.024), household head (χ2 = 14.484, p = 0.002), employment status (χ2 = 35.886, p < 0.0001), patients' preference of ACT to other anti-malarials (χ2 = 15.981, p < 0.0001), giving a patient/caregiver instructions on how to take the medication (χ2 = 7.134, p = 0.011), being satisfied with getting ACT at facility (χ2 = 48.261, p < 0.0001), patient/caregiver knowing the drug prescribed (χ2 = 5.483, p = 0.019), patient history of saving ACT medicines (χ2 = 39.242, p < 0.0001), and patient ever shared ACT medicines (χ2 = 30.893, p < 0.0001) were all associated with patients' adherence to ACT. Multivariate analysis demonstrated that adhering to ACT is 3.063 times higher for someone satisfied with getting ACT at the facility (OR = 3.063; p < 0.0001), 4.088 times for someone with history of saving ACT medicines (OR = 4.088; p < 0.0001), 2.134 times for someone who shared ACT (OR = 2.134; p = 0.03), and 2.817 times for someone with a household head (OR = 2.817; p = 0.008). CONCLUSION: Patients' adherence to ACT is generally good in the studied population. However, patients' tendencies to save ACT for future use and sharing among family members is a threat, amidst the benefits associated with adherence. There is a need to educate all about adherence to medicines as prescribed, and tighten government medicine supply chain to avoid stock-outs.


Assuntos
Antimaláricos , Artemisininas , Malária , Feminino , Humanos , Adulto Jovem , Adulto , Masculino , Uganda , Estudos Longitudinais , Artemisininas/uso terapêutico , Malária/tratamento farmacológico , Malária/prevenção & controle , Malária/epidemiologia , Antimaláricos/uso terapêutico , Combinação de Medicamentos , Quimioterapia Combinada
19.
Malar J ; 23(1): 128, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689257

RESUMO

BACKGROUND: Malaria treatment in sub-Saharan Africa is faced with challenges including unreliable supply of efficacious agents, substandard medicines coupled with high price of artemisinin-based combinations. This affects access to effective treatment increasing risk of malaria parasite resistance development and adverse drug events. This study investigated access to quality-assured artemisinin-based combination therapy (QAACT) medicines among clients of selected private drug-outlets in Uganda. METHODS: This was a cross sectional study where exit interviews were conducted among clients of private drug outlets in low and high malaria transmission settings in Uganda. This study adapted the World Health Organization/Health Action International (WHO/HAI) standardized criteria. Data was collected using a validated questionnaire. Data entry screen with checks was created in Epi-data ver 4.2 software and data entered in duplicate. Data was transferred to STATA ver 14.0 and cleaned prior to analysis. The analysis was done at 95% level of significance. RESULTS: A total of 1114 exit interviews were conducted among systematically sampled drug outlet clients. Over half, 54.9% (611/1114) of the participants were males. Majority, 97.2% (1083/1114) purchased an artemisinin-based combination anti-malarial. Most, 55.5% (618/1114) of the participants had a laboratory diagnosis of malaria. Majority, 77.9% (868/1114) of the participants obtained anti-malarial agents without a prescription. Less than a third, 27.7% (309/1114) of the participants obtained a QAACT. Of the participants who obtained QAACT, more than half 56.9% (173/309) reported finding the medicine expensive. The predictors of accessing a QAACT anti-malarial among drug outlet clients include type of drug outlet visited (aPR = 0.74; 95%CI 0.6, 0.91), not obtaining full dose (3-day treatment) of ACT (aPR = 0.49; 95%CI 0.33, 0.73), not finding the ACT expensive (aPR = 1.24; 95%CI 1.03, 1.49), post-primary education (aPR = 1.29; 95%CI 1.07,1.56), business occupation (aPR = 1.24; 95%CI 1.02,1.50) and not having a prescription (aPR = 0.76; 95%CI 0.63, 0.92). CONCLUSION: Less than a third of the private drug outlet clients obtained a QAACT for management of malaria symptoms. Individuals who did not find artemisinin-based combinations to be expensive were more likely to obtain a QAACT anti-malarial. The Ministry of Health needs to conduct regular surveillance to monitor accessibility of QAACT anti-malarial agents under the current private sector copayment mechanism.


Assuntos
Antimaláricos , Artemisininas , Acessibilidade aos Serviços de Saúde , Malária , Uganda , Artemisininas/uso terapêutico , Humanos , Estudos Transversais , Masculino , Feminino , Antimaláricos/uso terapêutico , Adulto , Adulto Jovem , Pessoa de Meia-Idade , Acessibilidade aos Serviços de Saúde/estatística & dados numéricos , Malária/tratamento farmacológico , Adolescente , Quimioterapia Combinada , Inquéritos e Questionários , Idoso
20.
Malar J ; 23(1): 249, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160583

RESUMO

BACKGROUND: Nigeria has the highest malaria burden globally, and anti-malarials have been commonly used to treat malaria without parasitological confirmation. In 2012, Nigeria implemented rapid diagnostic tests (RDTs) to reduce the use of anti-malarials for those without malaria and to increase the use of artemisinin-based combination therapy (ACT) for malaria treatment. This study examined changes in anti-malarial receipt among children aged 6-59 months during a 12-year period of increasing RDT availability. METHODS: A cross-sectional analysis was conducted using the Nigeria Malaria Indicator Survey (NMIS) data from 2010 (before RDT implementation in 2012), 2015, and 2021. The analysis assessed trends in prevalence of malaria by survey RDT result, and fever and anti-malarial/ACT receipt in the 2 weeks prior to the survey. A multivariable logistic regression was used to account for the complex survey design and to examine factors associated with anti-malarial receipt, stratified by survey RDT result, a proxy for recent/current malaria infection. RESULTS: In a nationally-representative, weighted sample of 22,802 children aged 6-59 months, fever prevalence remained stable over time, while confirmed malaria prevalence decreased from 51.2% in 2010 to 44.3% in 2015 and 38.5% in 2021 (trend test p < 0.0001). Anti-malarial use among these children decreased from 19% in 2010 to 10% in 2021 (trend test p < 0.0001), accompanied by an increase in ACT use (2% in 2010 to 8% in 2021; trend test p < 0.0001). Overall, among children who had experienced fever, 30.6% of survey RDT-positive and 36.1% of survey RDT-negative children had received anti-malarials. The proportion of anti-malarials obtained from the private sector increased from 61.8% in 2010 to 80.1% in 2021 for RDT-positive children; most of the anti-malarials received in 2021 were artemisinin-based combinations. Factors associated with anti-malarial receipt for both RDT-positive and RDT-negative children included geographic region, greater household wealth, higher maternal education, and older children. CONCLUSION: From 2010 to 2021 in Nigeria, both malaria prevalence and anti-malarial treatments among children aged 6-59 months decreased, as RDT availability increased. Among children who had fever in the prior 2 weeks, anti-malarial receipt was similar between children with either positive or negative survey RDT results, indicative of persistent challenges in reducing inappropriate anti-malarials uptake.


Assuntos
Antimaláricos , Testes Diagnósticos de Rotina , Malária , Antimaláricos/uso terapêutico , Nigéria/epidemiologia , Humanos , Lactente , Pré-Escolar , Estudos Transversais , Feminino , Masculino , Malária/tratamento farmacológico , Malária/epidemiologia , Testes Diagnósticos de Rotina/estatística & dados numéricos , Prevalência , Artemisininas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA